
Enhanced catalytic activity of perovskite oxides nanofibers for combustion of methane in coal mine ventilation air

Chao-qiu Chen^{ab}, Wei Li^{ab}, Chang-Yan Cao^c, and Wei-Guo Song^{*a}

 ^aBeijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. Tel & Fax: (+86)10-62557908 E-mail: wsong@iccas.ac.cn
^bGraduate School of Chinese Academy of Sciences, Beijing 100049, P. R. China
^cSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001,

P.R. China

Figure S1. SEM images for LaCoO₃ precursor fibers (a) and LaCoO₃ calcined at 800 °C (b) prepared without citric acid

Figure S2. X-ray diffraction patterns of LaCoO₃ prepared without citric acid and calcined at different temperature

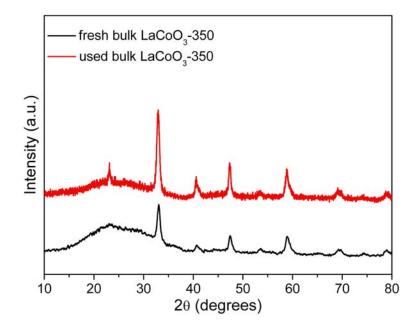
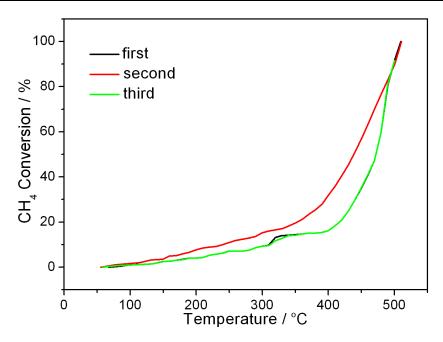
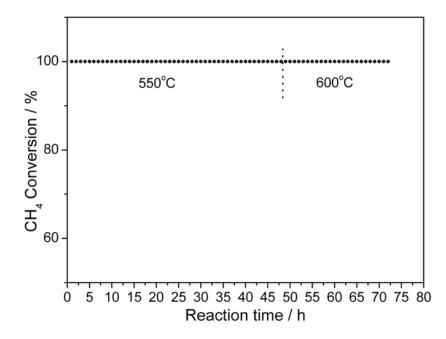




Figure S3. X-ray diffraction patterns of fresh and used bulk LaCoO₃-350

Figure S4. Methane conversion as a function of temperature over LaCoO₃ nanofibers prepared at 350 °C for first, second and third run (the third run was carried out after the stability test at 550 °C for 24h)

Figure S5. Time dependence of methane conversion over reused LaCoO₃ nanofibers **at 550** °C for 48h and at 600 °C for 24h