Formation of Al-rich nanocrystalline ZSM-5 via chloride-mediated, abrupt, atypical amorphous-to- crystalline transformation

Vanessa B. Mortola¹, Adriana P. Ferreira¹, Joseph M. Fedeyko², Christopher Downing⁴, Jose M. C. Bueno¹, Mayfair C. Kung³* and Harold H. Kung³*

SUPPORTING INFORMATION

Figure S1. XRD of Z-OH-4/24

Figure S2. XRD of (a) Z-Cl-1/24 sedimented at 3000rpm; (b) Z-Cl-4/24 sedimented at 3000 rpm and (c) supernatant of sample (b) spun down at 10,500 rpm.

Figure S3. (a) TEM of Z-Cl-1.5; scale bare =50 nm and (b) SEM of Z-Cl-1.5; scale bar= 2μ m.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010

Figure S4. TEM images of Z-2-1.75. The scale bars of S5a and b are 50nm and that of S5c and d are 100 nm.

Table S1

	Surface Area (m^2/g)			XRD	Calculated
Sample	As synthesized	Calcined	External	Primary	Primary
			Surface area	crystal	crystal
			of calcined	Size	Size ^a
			sample from	(nm)	(nm)
			t-plot		
Z-OH-4/24	100	349	157	63	32
Z-Cl-1/24	46	421	132	51	70
Z-Cl-2/24	51	436	138	46	63
Z-Cl-4/24 ^d	62	445	144	51	51
Z-Cl-2	58	438	90	61	55

a: Primary crystal size, X, was calculated using the model of Song et. al. ¹ that was developed assuming a cubic crystal shape.

Crystal size $X (nm) = 3214/S_{ext} (m^2/g)$

1. Song, W.; Justice, R. E.; Jones, C. A.; Grassian, V. H.; Larsen, S. C., Size-dependent properties of nanocrystalline silicalite synthesized with systematically varied crystal sizes. *Langmuir* **2004**, 20, (11), 4696-702.