Supporting Information for

Bis(8-hydroxyquinolate-5-sulfonate)zinc intercalated layered double hydroxides and its controllable luminescent properties

Shuangde Li, Jun Lu*, Jing Xu, Sile Dang, David G. Evans, and Xue Duan

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.

List of Content

1. Structural and compositional characterization of DDS–ZQS(x%)/LDH

Figure S1. XRD patterns for DDS–ZQS(*x*%)/LDH.

Figure S2. FT-IR spectra of DDS–ZQS(*x*%)/LDH.

Figure S3. TG/DTA data for ZQS and ZQS(100%)/Mg₂Al LDH.

2. Optical properties of DDS–ZQS(*x*%)/LDH

Figure S4. The UV-vis absorption spectra of DDS-ZQS(x%)/LDH film.

Figure S5. The photoluminescence spectra of ZQS solution and crystal.

Figure S6. 1931 CIE chromaticity diagram for DDS–ZQS(x%)/Mg₂Al LDH powder.

Figure S7. Fluorescence decay curves and residual plots of fits for DDS-ZQS(x%)/

LDH and ZQS film.

Table S1. The double-exponential fitting of fluorescence decay data of ZQS and DDS–ZQS(x%)/LDH film.

1. Structural and compositional characterization of DDS–ZQS(x%)/LDH

Figure S1. A) The XRD patterns of the low angle region for DDS–ZQS(x%)/ Mg₂Al LDH powder samples; B) The plots of interlayer spacing *vs* ZQS anions concentration *x* in DDS–ZQS(x%)/Mg₂Al LDH; C) The XRD patterns for the DDS–ZQS(x%)/Mg₂Al LDH films and their XRD of low angle region, D): (a–h, x = 2, 5, 10, 20, 40, 60, 80, 100), respectively. E) The XRD patterns for powder samples of DDS–ZQS(5%)/M_nAl LDH (a – c: Mg₃Al, Zn₂Al, Zn₃Al) and (d – f) for film samples of (a – c), respectively.

Figure S2. FT-IR spectra of A) DDS–ZQS(x%)/Mg₂Al LDH (a – f, x = 2, 10, 40, 60, 80, 100). B) (a) DDS–ZQS(5%)/Mg₂Al LDH, (b) DDS–ZQS(5%)/Mg₃Al LDH, (c) DDS–ZQS(5%)/Zn₂Al LDH, (d) DDS–ZQS(5%)/Zn₃Al LDH.

Figure S3. TG/DTA data for A) ZQS and B) ZQS(100%)/Mg₂Al LDH.

2. Optical properties of DDS–ZQS(x%)/LDH

Figure S4. The UV-vis absorption spectra of A) (a) ZQS $(5 \times 10^{-5} \text{ M})$ aqueous solution, (b) ZQS crystal, (c) DDS–ZQS(5%)/Mg₃Al LDH, (d) DDS–ZQS(5%)/Mg₂Al LDH, (e) DDS–ZQS(5%)/Zn₃Al LDH, (f) DDS–ZQS(5%)/Zn₂Al LDH. B) DDS–ZQS(x%)/Mg₂Al LDH film (x = 2, 5, 10, 20, 40, 60, 80, 100).

Figure S5. The photoluminescence spectra of a) ZQS $(5 \times 10^{-5} \text{ M})$ aqueous solution, b) magnified nearly 50 multiple of curve a, c) ZQS crystal with the excitation at 370 nm.

Figure S6. 1931 CIE chromaticity diagram for DDS–ZQS(x%)/Mg₂Al LDH powder (x = 2, 5, 10, 40, 80, 100, white square labels were marked with the varied direction indicated by the arrow).

Figure S7. Fluorescence decay curves and residual plots of double-exponential fitting for the DDS–ZQS(x%)/LDH film samples with varied *x*, and one-exponential fitting for ZQS solution.

samples	$\tau_i(ns)$	$A_i(\%)$	<\cap\$(ns)	χ^2
DDS-ZQS(2%)/Mg2Al LDH	1.21	36.63	13.20	1.35
	20.13	63.37		
DDS-ZQS(5%)/Mg2Al LDH	7.09	19.41	22.86	1.23
	26.66	80.59		
DDS-ZQS(10%)/Mg2Al LDH	2.06	43.26	12.38	1.22
	20.24	56.74		
DDS-ZQS(40%)/Mg2Al LDH	2.32	36.26	11.19	1.14
	18.24	56.74		
DDS-ZQS(80%)/Mg2Al LDH	2.66	30.44	11.07	1.18
	14.75	69.56		
ZQS(100%)/Mg2Al LDH	3.71	41.31	10.50	1.22
	15.28	58.69		
DDS-ZQS(5%)/Mg3Al LDH	7.49	20.35	17.98	1.02
	20.66	79.65		
DDS-ZQS(5%)/Zn2Al LDH	10.71	15.55	28.23	1.15
	31.46	84.45		
DDS-ZQS(5%)/Zn ₃ Al LDH	9.23	22.75	25.14	1.26
	29.83	77.25		
ZQS solution (5×10^{-5} M)	2.67	100	2.67	1.01
ZQS crystal	6.63	22.80	17.14	1.09
	20.24	77.20		

Table S1. The double-exponential fitting of fluorescence decay data of ZQS and DDS–ZQS(x%)/LDH film.