Lithium storage in metal organic framework with diamondoid topology – A case study on metal formates

Kuppan Saravanan, Mangayarkarasi Nagarathinam, Palani Balaya* and Jagadese J. Vittal*

Supporting Information

Gibb's free energy calculations:

 $Zn_3(HCOO)_6 + 6Li^+ + 6e^- \leftrightarrow 3Zn + 6HCOOLi$ (reaction spontaneous)-----(1)

Zinc formate	Lithium formate	$\Delta G = \Delta G p \text{-} \Delta G_R$
(KJ/mol)	(KJ/mol)	(KJ/mol)
-864.8	-612	-360 KJ/mol

 $Zn(HCOO)_2 \leftrightarrow ZnO + CO + CO_2 + H_2$ (Reaction not spontaneous)-----(2)

Zinc formate	ZnO	CO_2	СО	H_2	$\Delta G = \Delta G_p \text{-} \Delta G_r$	
(KJ/mol)	(J/mol)	(KJ/mol)	(KJ/mol)	(KJ/mol)	(KJ/mol)	
-864.8	-307	-394	-137	0	+26 KJ/mol	
$Zn(HCOO)_2 + Li \leftrightarrow ZnO + Li_2O + 2CO + H_2$ (Reaction spontaneous)(3)						

Zinc formate	Li ₂ O	ZnO	СО	H ₂	$\Delta G = \Delta G_p \text{-} \Delta G_r$
(KJ/mol)	(J/mol)	(KJ/mol)	(KJ/mol)	(KJ/mol)	(KJ/mol)
-864.8	-367	-307	-137	0	-84 KJ/mol

From this calculation it is clear that formation of lithium formate (eqn-1) is more favourable than ZnO/Li_2O formation (eqn-3).

Fig. S1 PXRD patterns of MFor [M = Zn (FOR1), Co (FOR3) and ZnCo (FOR4)] with their simulated PXRD pattern.

Fig S2 Ex-situ PXRD patterns of the electrodes of bare FOR1, and those b) discharged to 0.005 V, c) charged to 3.0 V and d) after 60 cycles. Lines due to Cu-current collector are marked with *.

Fig.S3 FESEM images of the FOR1 [Zn₃(HCOO)₆] plates at two different magnifications

Fig. S4 TEM images of the diamondoid FOR1 [Zn₃(HCOO)₆] at two different magnifications

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010

Fig. S5 Galvanostatic charge–discharge cycle curves for FOR2 (a) 1^{st} cycle and (b) selected cycles. (Current density of 60 mA/g (0.11C) plot. Potential window 0.005 - 3 V, recorded at room temperature)

Figure S6 PXRD patterns of FOR1, FOR3 and FOR4

CAS Registry Number:1314-13-2 Formula: Zn O CA Index Name: Zinc oxide (ZnO) SpectrumID: NIDA69905 Spectrometer: Nicolet 170SX or JASCO FT/IR-410

Source: Integrated Spectral Database System of Organic Compounds. (Data were obtained from the National Institute of Advanced Industrial Science and Technology (Japan))