Supporting Information

Synthesis of Walnut-like Hierarchical Structure with Superhydrophobic and Conductive Properties

Nina Jiang^a, Yiting Xu^a, Ning He^b, Jiangfeng Chen^a, Yuanming Deng^a, Conghui Yuan^a, Guobin Han^b and Lizong Dai*^a

^a Key Laboratory of Fire Retardant Materials of Fujian Province, College of Materials, Xiamen University, 361005, P.R.China

^bCollege of Chemistry and Chemical Engineering, Xiamen University, 361005, P.R.China

*To whom correspondence should be addressed.

Tel: +86 0592-2186178 Fax: +86 0592-2183979

E-mail: lzdai@xmu.edu.cn;

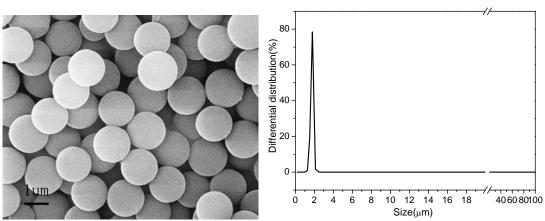


Fig. s1 SEM images and size distribution of monodispersed PS microspheres

Fig. S2 A photograph of C₁₀DAB solutions and C₁₂TAC solutions containing bromothymol blue

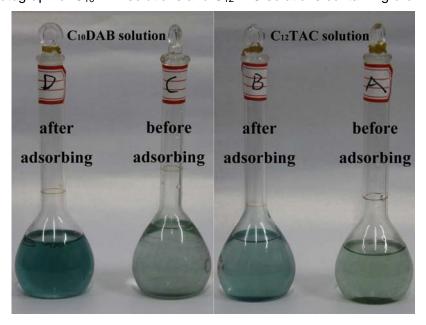


Fig. S3 SEM images of PS/PANI composite particles synthesized without the cationic surfactant. Other synthetic conditions: The mass ratio of PS and aniline is 10:1, room temperature

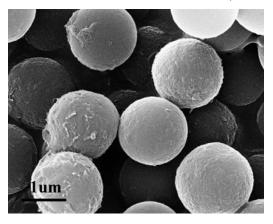


Fig. S4 SEM images of the PS/PANI hierarchical structure synthesized at 4° C and with different polymerization times. Other synthetic conditions: The mass ratio of PS and aniline is 10:1, $C_{10}DAB$.

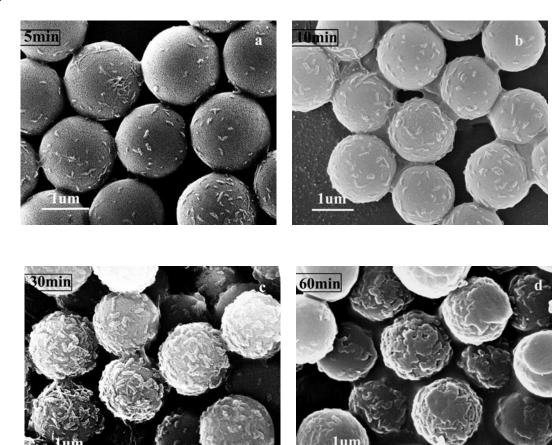


Table s1. The CHN element microanalysis of the walnut-like PS/PANI Particles ^a

Name	Weight	С	N	Н	PANI
	(mg)	(wt%)	(wt%)	(wt%)	Loading
					(wt%)
Walnut-like	3.2890	88.96	0.877	9.179	5.826
hierarchical					
structure					

^a The PANI loading on the surface of PS microspheres is calculated by using the following equation:

PANI Loading (wt%)=
$$\frac{N(wt\%)}{M(nitrogen)} \times M(aniline)$$

Table s2. The CHN element microanalysis of the PS/PANI particles synthesized at room temperature a

Name	Weight (mg)	C (wt%)	N (wt%)	H (wt%)	PANI Loading (wt%)
Walnut-like hierarchical structure	1.0180	88.65	0.666	7.613	4.424

^a The PANI loading on the surface of PS microspheres is calculated by using the following equation:

PANI Loading (wt%)=
$$\frac{N(wt\%)}{M(nitrogen)} \times M(aniline)$$