Electronic Supplementary Information for:

Tuning the Emission Properties of Cyclometalated Platinum(II) Complexes by Intramolecular-Electron-Sink/Arylethynylated Ligands and Its Application For Enhanced Luminescent Oxygen Sensing

Wanhua Wu,^a Wenting Wu,^a Shaomin Ji,^a Huimin Guo,^b Peng Song,^c Keli Han,^c Lina Chi,^a

Jingyin Shao^a and Jianzhang Zhao^a*

^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 158 Zhongshan Road,

Dalian 116012 P. R. China^b Department of Chemistry, School of Chemical Engineering, Dalian University of Technology, P.O. Box 40,

158 Zhongshan Road, Dalian 116012, P. R. China. ^c Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457

Zhongshan Road, Dalian 116023, P. R. China.

* zhaojzh@dlut.edu.cn

Index

General information	S2 S3 S4 .S5 .S6
Figure S5-S6. ¹³ C NMR and MS spectra of L-1 Figure S7-S8. ¹ H NMR and ¹³ C NMR spectra of Pt-1 Figure S9-S10. MS spectra of Pt-1 and ¹ H NMR of Pt-2 Figure S11-S12. TOCSY and ¹³ CNMR of Pt-2. Figure S13-S14. ¹ H NMR of compound 4 and 5	S7 S8 S9 S10 S11
Figure S15-S16. ¹ H NMR and ¹³ CNMR spectra of L2. Figure S17-S18. MS of L-2 and HNMR spectra of Pt-3. Figure S19-S20. TOCSY and ¹³ C NMR of Pt-2. Figure S21-S22. ¹ H NMR spectra of 6, L-3. Figure S23-S24. ¹³ C NMR and MS spectra of L-3.	S12 S13 S14 S15 S16
Figure S25-S26. ¹ H NMR and ¹³ C NMR spectra of Pt-4 Figure S27-S28. MS of Pt-4 and ¹ H NMR spectra of Pt-5 Figure S29-S30. ¹³ C NMR and MS spectra of Pt-5 Figure S31. Emission of complex Pt-3 in solution under difference atmosphere of Ar, air and oxygen Figure S32. Emission of Pt-1 and Pt-3 in solution under different concentration of oxygen	S17 S18 S19 S20 S20
 Figure S33. UV-vis absorption and emission of Pt-1 in solution Figure S34. UV-vis absorption and emission of Pt-2 in solution Figure S35. Frontier molecular orbital for (<i>ppy</i>)Pt(acac) Table S1. Low-lying Electronically Excited States of complex (<i>ppy</i>)Pt(acac) Figure S36. Frontier molecular orbital for Pt-1 	S21 S21 S22 S23 S24
Table S2. Low-lying Electronically Excited States of complex Pt-1 Figure S37. Frontier molecular orbital for Pt-2 Table S3. Low-lying Electronically Excited States of complex Pt-2 Figure S38. Frontier molecular orbital for Pt-3 Table S4. Low-lying Electronically Excited States of complex Pt-3	S25 S26 .S27 .S28 S29
Figure S39. Frontier molecular orbital for Pt-4 Table S5. Low-lying Electronically Excited States of complex Pt-4 Figure S40. Frontier molecular orbital for Pt-5 Table S6. Low-lying Electronically Excited States of complex Pt-5 Figure S41. Phosphorescent intensity response of Pt-3 , Pt-4 , Pt-5 to step variations of O ₂ concentration	S30 S31 .S32 S33 .S34

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010	
Figure S42. Fitting of the oxygen sensing property based on the modified Stern-Volmer equation	S35
Table S7 . parameters of O ₂ sensing film	\$35
Figure S43. CIE color coordinates of the ratiometric oxygen sensing. Pt-2 and Pt-3	\$36
Figure S44. HPLC of Pt-1	\$37
Figure S45. HPLC of Pt-2	\$37

Experimental Section

General

All the chemicals are analytical pure and were used as received. Solvents were dried and distilled for synthesis. NMR spectra were recorded on a 400 MHz Varian Unity Inova NMR spectrophotometer. Mass spectra were recorded with Q-TOF Micro MS spectrometer. UV-Vis absorption spectra were measured with a HP8453 UV-visible spectrophotometer. Fluorescence spectra were recorded on JASCO FP-6500 or a Sanco 970 CRT spectrofluorometer. Fluorescence quantum yields were measured with Ru(bpy)₂(Phen) as the reference ($\Phi = 6.0$ %, in CH₃CN, under deaerated condition). Fluorescence lifetimes were measured on a Horiba Jobin Yvon Fluoro Max-4 (TCSPC) instrument.

All these calculations were performed in Gaussian 09 suit.

Synthesis

n-butyl-4-bromo-1,8- naphthalimide (1)

A solution of n-butylamine (1.28 g, 18 mmol) in ethanol (50 mL) was added dropwise to a mixture of 4-bromo-1,8-naphthalic anhydride (4.0 g, 14 mmol) and ethanol (250 mL) at 60°C under vigorous stirring. The mixture was refluxed for 6 h until the mixture became clear, then cooled to room temperature and filtered to give the crude product as a yellow powder. After recrystallization from anhydrous ethanol, compound 1 was obtained as a white solid. 4.15 g, yield: 89.2%. 1H NMR (400 MHz, CDCl₃) 8.66 (d, 1H, J = 4.0 Hz), 8.56 (d, 1H, J = 8.4 Hz), 8.41 (d, 1H, J = 6.4 Hz), 8.04 (d, 1H, J = 8.4 Hz), 7.86 (t, 2H, J = 8.4 Hz), 4.17 (t, 2H, J = 8.4 Hz), 1.75–1.68 (m, 2H), 1.50–1.40 (m, 2H), 0.98 (t, 3H, J = 8.4 Hz).

(4-Ethynylphenyl)pyridine (3)

Tetrakis(triphenylphosphine)palladium(0) (106.8 mg, 0.72 mmol) and Cul (274.0 mg, 1.44 mmol) were added to a solution of 2-(4'-Bromophenyl) pyridine (4.06 g, 14.4 mmol) in triethylamine (120 mL) that had been deaerated with argon. Trimethylsilylacetylene (4.1 mL, 28.8 mmol) was added via syringe. The mixture was then heated to 60 °C for 8 h. The solvent was removed under reduced pressure, water was added and the mixture was extracted with dichloromethane (DCM, 4×20 mL). The combined organic layer was dried over anhydrous Na2SO4. After removal the solvent the crude product was purified with column chromatography (silica gel, DCM: petroleum ether = 1:4), light yellow oil was abstained. 2.59 g, yield: 72.0 %. Tetrabutylammonium fluoride (1 M in tetrahydrofuran, 36 mL, 36 mmol) was added to a solution of the above trimethylsilane protected intermediate (2.26 g, 8.97 mmol) in tetrahydrofuran (50 mL), and the solution was stirred at room temperature under argon for 3 h. DCM (100 mL) and water (150 mL) were added. The organic layer was separated, and the aqueous layer was extracted with DCM (3×15 mL). The combined organic layers were washed with brine (200 mL), dried over anhydrous magnesium sulfate, and filtered, and then the solvent was completely removed. The residue was purified by passing through a silica plug using DCM as eluent to give a yellow solid 3, 1.44 g, 90.0 %. 1H NMR (400 MHz, CDCl₃): 8.69 (d, 1H, J = 4.7 Hz), 7.97 (d, 2H, J = 8.3Hz), 7.75–7.69 (m, 2H), 7.60 (d, 2H, J = 8.0 Hz), 7.22 (t, 1H, J = 5.7 Hz), 3.17 (s, 1H).

4-iodobenzonitrile (4)

4-aminobenzonitrile (5.9 g, 0.05 mol) and HCl (18 %, 30 mL) were mixed and cooled to $0-5^{\circ}$ C. Solution of NaNO2 (3.35 g, 51 mmol) in water was added in portions (finish within 1.5 h). The mixture was kept at $0-5^{\circ}$ C for 30 min. To the above solution was added 20 mL of acetonitrile. Then solution of KI (8.65 g, 52 mmol) in 15 mL water was added dropwise and bubble evolved (N₂). The mixture was stirred at r.t. overnight. White precipitate obtained. Ethyl acetate (100 mL) was added and the organic layer was washed with saturated NaHSO₃, saline (2×50 mL), NaHCO₃ (10%) and water. The organic layer was dried over anhydrous MgSO₄. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (silica gel, petroleum ether/ethyl acetate = 10:1, V/V). Brown solid was obtained, 4.92 g, yield: 43.0 %. ¹H NMR (400 MHz , CDCl₃) 7.86 (d, 2H, *J* = 8.0 Hz), 7.38 (d, 2H, *J* = 8.0 Hz).

4-ethynylbenzonitrile (5)

Under nitrogen atmosphere, $Pd(PPh3)_2Cl_2$ (13.7 mg, 0.02 mmol), Cul (98.0 mg, 0.04 mmol), 4-iodobenzonitrile (614 mg, 2.69 mmol) and triethylamine (5 mL) were mixed together. The mixture was stirred until a clear solution was obtained. Then ethynyl trimethylsilane (527 mg, 5.37 mmol) was added via syringe. The mixture was heated at 45–50 °C for 4 h. Then the reaction mixture was extracted with ethyl acetate (50 mL). The organic layer was

dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to give a pale yellow solid (trimethylsilane protected ethynyl compound). This compound was dissolved in methanol (30 mL) and stirred with K₂CO₃ (1.132 g) for 3 h at r.t. The mixture was filtrated and extracted with diethyl ether. The organic layer was dried and evaporated to give the crude product. The crude product wad purified by column chromatography (silica gel, petroleum ether/dichloromethane = 10:1, V/V). Pale yellow solid was obtained, 280.5 mg, yield: 82.2 %. 1H NMR (400 MHz, CDCl3) 7.74 (d, 2H, J = 8.0 Hz), 7.58 (d, 2H, J = 8.0 Hz), 3.21 (s, 1H).

1-ethynylnaphthalene (6)

Under argon atmosphere, 1-bromonaphthalene (2.0 g, 9.66 mmol), Pd(PPh3)2Cl2 (135.2 mg, 0.193 mmol), PPh3 (101.2 mg, 0.386 mmol), Cul (73.4 mg, 0.386 mmol) were dissolved in triethylamine (20 mL). After stirring, ethynyltrimethylsilane (1.42 g, 14.5 mmol) was added via syringe. The solution was refluxed for 8 h. The solvent was removed under reduced pressure and the crude product was purified by column chromatography ,silica gel, with hexane as the eluent, light yellow oil was obtained. The above trimethylsilane protected intermediate was dissolved in methanol (30 mL), K₂CO3 (2.1 g, 15.3 mmol) was added and the mixture was stirred at r.t. for 3 h. The solvent was removed under reduced pressure. Water was added and the mixture was extracted with dichloromethane. The organic layer was dried over anhydrous Na₂SO₄. After removal the solvent, compound 3 was obtained as light yellow oil. 740 mg, yield: 50.4 %. 1H NMR (400 MHz, CDCl3): 8.37 (d, 1H, *J* = 8.1 Hz), 7.84 (d, 2H, *J* = 8.0 Hz), 7.74(d, 1H, *J* = 7.1 Hz), 7.57 (t, 1H, *J* = 7.3 Hz), 7.51(t, 1H, *J* = 7.5 Hz), 7.40 (t, 1H, *J* = 8.1 Hz), 3.46 (s, 1H).

Fig. S1¹H NMR of *N*-butyl-4-bromo-1,8- naphthalimide (1) (400 MHz, CDCl₃)

Fig. S2 ¹H NMR of 2-(4-Bromophenyl) pyridine (2) (400 MHz, CDCl₃)

Fig. S3 ¹HNMR of 2-(4-ethynylphenyl)pyridine (**3**) (400 MHz, CDCl₃).

Fig. S4 ¹H NMR of **L1** (400 MHz, $CDCl_3$).

Fig. S5¹³C NMR of **L1** (100 MHz, CDCl₃).

Fig. S6 TOF HRMS ESI of L1.

Fig. S7¹H NMR of **Pt-1** (400 MHz, CDCl₃).

Fig. S8¹³CNMR of **Pt-1** (100 MHz, CDCl₃).

S9

Fig. S11 TOCSY of Pt-2 (400 MHz, CDCl₃).

Fig. S12 13 C NMR of Pt-2 (100 MHz, CDCl₃).

Fig. S14 ¹H NMR of **5** (400 MHz, CDCl₃).

Fig. S15 ¹H NMR of **L2** (400 MHz, CDCl₃).

Fig. S18¹H NMR of **Pt-3** (400 MHz, CDCl₃).

Fig. S19 TOCSY of Pt-3 (400MHz, CDCl₃).

Fig. S21¹H NMR of 1-ethynylnaphthalene (6) (400 MHz, CDCl₃).

Fig. S22 ¹H NMR of **L3** (400 MHz, CDCl₃).

Fig. S23 ¹³CNMR of L3 (100 MHz, CDCl₃).

Fig. S24 TOF HRMS ESI of L3.

Fig. S28¹H NMR of **Pt-5** (400MHz, CDCl₃).

Fig. S29¹³C NMR of **Pt-5** (100 MHz, CDCl₃).

Fig. S30 MALDI-MS of Pt-5.

Fig. S31 Emission of complexes in solution under different atmosphere of Ar, air and oxygen. **Pt-3**, λ ex = 400 nm. The solution is purged with Ar or O₂ for about 20 min before measurement. 1.0×10^{-5} mol dm⁻³ in DCM. 20 °C.

Fig. S32 Emission of complexes **Pt-1** and **Pt-3** in solution under different concentration of oxygen $(1.0 \times 10^{-5} \text{ mol} \text{ dm}^{-3} \text{ in DCM})$,(a) **Pt-1**, $\lambda \text{ex} = 390 \text{ nm}$.(b) **Pt-2** $\lambda \text{ex} = 400 \text{ nm}$. The solution is purged with Ar or O2 for about 20 min before measurement. 20 °C.

Fig. S33 (a) UV-Vis absorption spectra of **Pt-1** at different concentration in CH_2Cl_2 (from 1.0×10^{-6} M to 2.0×10^{-5} M). (b) Emission of complex **Pt-1** at different concentration in CH_2Cl_2 (from 1.0×10^{-6} M to 2.0×10^{-5} M) under Ar atmosphere. $\lambda ex = 390$ nm.

Fig. S34 (a) UV-Vis absorption spectra of **Pt-2** at different concentration in CH_2CI_2 (from 1.0×10^{-6} M to 2.0×10^{-5} M). (b) Emission of complex **Pt-2** at different concentration in CH_2CI_2 (from 1.0×10^{-6} M to 1.0×10^{-5} M) under Ar atmosphere. $\lambda ex = 350$ nm.

Fig. S35 Frontier molecular orbital for (ppy)Pt(acac). Calculated by DFT at the B3LYP/6-31G((d)/ LanL2DZ level

using Gaussian 09.

Table S1. Electronic Excitation Energies (eV) and corresponding Oscillator Strengths (*f*), main configurations and CI coefficients of the Low-lying Electronically Excited States of complex (*ppy*)Pt(acac), Calculated by TDDFT//B3LYP/6-31G(d)/LanL2DZ, based on the DFT//B3LYP/6-31G(d)/ LanL2DZ Optimized Ground State Geometries.

	Electronic			TDDFT//B3LYP/6-31G(d)		
	transition	Energy ^a	$m{f}^{ b}$	Composition $^{\circ}$	CI ^d	character
				HOMO−1→LUMO	0.21651	LLCT
Singlet	$S_0 \rightarrow S_1$	3.12 eV 397 nm	0.0289	HOMO→LUMO	0.64243	ILCT, LLCT
	$S_0 \rightarrow S_2$	3.49 eV 355 nm	0.0033	HOMO–2→LUMO	0.62316	MLCT
	$S_0 \rightarrow S_3$	3.53 eV 351 nm	0.0561	HOMO−1→LUMO	0.62124	LLCT
				HOMO→LUMO	0.21200	ILCT, LLCT
				HOMO→LUMO+1	0.17675	MLCT, ILCT
				HOMO−3 \rightarrow LUMO	0.19501	ILCT
				HOMO−3→LUMO+1	0.10457	ILCT, LLCT
				HOMO–1 \rightarrow LUMO	0.37509	LLCT
Triplet	$S_0 \rightarrow T_1$	2.65 eV 467 nm	0.0000 ^e	$HOMO \rightarrow LUMO$	0.57424	ILCT, LLCT
				$HOMO \rightarrow LUMO+1$	0.10573	MLCT, ILCT
				$HOMO \rightarrow LUMO+4$	0.10409	LLCT

^a Only the selected low-lying excited states are presented. ^b oscillator strength. ^c Only the main configurations are presented. ^d The CI coefficients are in absolute values. ^e No spin-orbital coupling effect was considered, thus the f values are zero.

Fig. S36 Frontier molecular orbitals of **Pt-1.** H stands for HOMO and L stands for LUMO. Calculated by DFT at the B3LYP/6-31G((d)/ LanL2DZ level using Gaussian 09.

Table S2. Electronic Excitation Energies (eV) and corresponding Oscillator Strengths (f), main configurations and CI coefficients of the Low-Iying Electronically Excited States of complex **Pt-1**, Calculated by TDDFT//B3LYP/6-31G(d)/LanL2DZ, based on the DFT//B3LYP/6-31G(d)/LanL2DZ Optimized Ground State Geometries.

	Electronic			т	DDFT//B3LYP/6-310	6(d)	
	transition	Energ	sy ^a	f ^b	Composition ^c	CI ^d	character
Singlet	S0→S1	2.74 eV	452 nm	0.4456	H-2→L	0.1131	MLCT,LLCT, ILCT
					H-1→L	0.1651	MLCT,LLCT, ILCT
					H→L	0.6317	MLCT, ILCT
	S0→S2	2.89 eV	429 nm	0.4941	H-1→L	0.6560	MLCT,LLCT, ILCT
					H→L	0.1358	MLCT, ILCT
	S0→S3	3.14 eV	394 nm	0.1411	H-2→L	0.5607	MLCT,LLCT, ILCT
					H-2→L+1	0.2081	MLCT,LLCT
					H→L	0.1431	MLCT, ILCT
					H→L+1	0.2632	MLCT,LLCT
Triplet	S0→T1	1.86 eV	666 nm	0.0000e	$H-4 \rightarrow L$	0.1478	ILCT
					$H-4 \rightarrow L+1$	0.1493	ILCT
					$H-2 \rightarrow L$	0.2110	MLCT,LLCT, ILCT
					$H-1 \rightarrow L$	0.3419	MLCT,LLCT, ILCT
					$H \rightarrow L$	0.6331	MLCT, ILCT

^a Only the selected low-lying excited states are presented. ^b oscillator strength. ^c H stands for HOMO and L stands for LUMO. Only the main configurations are presented. ^d The CI coefficients are in absolute values. ^eNo spin-orbital coupling effect was considered, thus the f values are zero.

Fig. S37 Frontier molecular orbitals of **Pt-2**. H stands for HOMO and L stands for LUMO. Calculated by DFT at the B3LYP/6-31G((d)/ LanL2DZ level using Gaussian 09.

Table S3. Electronic Excitation Energies (eV) and corresponding Oscillator Strengths (f), main configurations and CI coefficients of the Low-lying Electronically Excited States of complex **Pt-2**, Calculated by TDDFT//B3LYP/6-31G(d)/LanL2DZ, based on the DFT//B3LYP/6-31G(d)/LanL2DZ Optimized Ground State Geometries.

	Electronic		TDDFT//B3LYP/6-31G(d)					
	transition	Energy	(eV) ^a	f ^b	Composition $^{\circ}$	CI ^d	character	
Singlet	S0→S1	2.93 eV	423 nm	0.0498	H-1→L	0.2357	LLCT MLCT	
					H→L	0.6092	LLCT	
					H→L+1	0.1304	ILCT, LLCT,MLCT	
	S0→S2	3.17 eV	391 nm	0.0446	H-1→L	0.5954	LLCT MLCT	
					H→L	0.2488	LLCT	
					H-1→L+1	0.1282	ILCT,LLCT	
	S0→S7	3.64 eV	341 nm	0.2859	H-2→L+1	0.5641	MLCT	
					H-2→L	0.2040	ILCT	
					H-1→L+1	0.1913	ILCT,LLCT	
	S0→S22	4.22 eV	294 nm	0.2931	H-1→L+3	0.3191	LLCT	
					H-7→L	0.3390	LLCT, MLCT	
					H-4→L	0.2645	LLCT	
					H-4→L+1	0.2144	ILCT, LLCT	
					H-1→L+3	0.2243	LLCT,MLCT	
Triplet	$S0 \rightarrow T_1$	2.29 eV	541 nm	0.0000 ^e	$H-2 \rightarrow L+1$	0.7118	MLCT	
					$H-2 \rightarrow L$	0.2058	LLCT,MLCT	
					$H-1 \rightarrow L+1$	0.1585	ILCT,LLCT	
					$H-3 \rightarrow L+1$	0.1530	MLCT	

^a Only the selected low-lying excited states are presented. ^b oscillator strength. ^c H stands for HOMO and L stands for LUMO. Only the main configurations are presented. ^d The CI coefficients are in absolute values. ^e No spin-orbital coupling effect was considered, thus the f values are zero.

Fig. S38 Frontier molecular orbital for Pt-3. Calculated by DFT at the B3LYP/6-31G((d)/ LanL2DZ level using Gaussian 09.

Table S4. Electronic Excitation Energies (eV) and corresponding Oscillator Strengths (*f*), main configurations and CI coefficients of the Low-lying Electronically Excited States of complex **Pt-3**, Calculated by TDDFT//B3LYP/6-31G(d)/LanL2DZ, based on the DFT//B3LYP/6-31G(d)/ LanL2DZ Optimized Ground State Geometries.

	Electronic	TDDFT//B3LYP/6-31G(d)						
	transition	Energy ^a	$oldsymbol{f}^{\mathrm{b}}$	Composition ^c	CI ^d	character		
Singlet	$S_0 \rightarrow S_1$	2.96 eV 418 nm	0.0560	HOMO−1→LUMO	0.20956	MLCT, LLCT		
				HOMO→LUMO	0.63211	MLCT, LLCT, ILCT		
				HOMO−2→LUMO	0.17326	MLCT		
	$S_0 \rightarrow S_3$	3.26 eV 380 nm	0.0486	HOMO−1→LUMO	0.62690	MLCT, LLCT		
				HOMO→LUMO	0.21588	MLCT, LLCT, ILCT		
	$S_0 \rightarrow S_{13}$	4.23 eV 293 nm	0.2118	HOMO−6→LUMO	0.25770	MLCT, LLCT		
				HOMO−5→LUMO	0.24341	ILCT		
				HOMO−4→LUMO	0.27281	ILCT		
				HOMO−1→LUMO+1	0.31459	LLCT		
				HOMO−1→LUMO+2	0.33672	MLCT, LLCT		
				HOMO–4 \rightarrow LUMO	0.17965	ILCT		
	$S_0 \rightarrow T_1$	2.41 eV 515 nm	0.0000	$HOMO-1 \rightarrow LUMO+1$	0.37069	LLCT		
				$HOMO \rightarrow LUMO$	0.60752	MLCT, LLCT, ILCT		
Triplet	$S_0 \rightarrow T_2$	2.81 eV 442 nm	0.0000	HOMO−6→ LUMO	0.22603	ILCT		
				$HOMO-4 \rightarrow LUMO$	0.15205	ILCT		
				HOMO-4 \rightarrow LUMO+1	0.44021	MLCT, LLCT, ILCT		
				HOMO–1 \rightarrow LUMO	0.22065	ILCT		
				HOMO→ LUMO	0.49713	MLCT, LLCT, ILCT		

^a Only the selected low-lying excited states are presented. ^b oscillator strength. ^c Only the main configurations are presented. ^d The CI coefficients are in absolute values. ^e No spin-orbital coupling effect was considered, thus the f values are zero.

Fig. S39 Frontier molecular orbital for **Pt-4**. Calculated by DFT at the B3LYP/6-31G((d)/ LanL2DZ level using Gaussian 09.

Table S5. Electronic Excitation Energies (eV) and corresponding Oscillator Strengths (*f*), main configurations and CI coefficients of the Low-Iying Electronically Excited States of complex **Pt-4**, Calculated by TDDFT//B3LYP/6-31G(d)/LanL2DZ, based on the DFT//B3LYP/6-31G(d)/LanL2DZ Optimized Ground State Geometries.

	Electronic	TDDFT//B3LYP/6-31G(d)							
	transition	Energy (eV) ^a	$oldsymbol{f}^{ extsf{b}}$	Composition $^{\circ}$	CI ^d	character			
Singlet	$S_0 \rightarrow S_1$	2.94 eV/421 nm	0.4676	H→L	0.5804	ILCT			
				H-1→L	0.2412	LLCT/MLCT			
				H-2→L	0.1809	ILCT			
	$S_0 \rightarrow S_2$	3.13 eV/396 nm	0.2758	H→L	0.2755	ILCT			
				H-1→L	0.6128	LLCT/MLCT			
	$S_0 \rightarrow S_5$	3.55 eV/349 nm	0.2108	H→L+1	0.6111	ILCT			
				H-1→L+1	0.2145	LLCT/MLCT			
Triplet	$S_0 \rightarrow T_1$	2.07 eV/599 nm	0.0000 ^e	H→L	0.6806	ILCT			
				H→L+1	0.2657	ILCT			

^a Only the selected low-lying excited states are presented. ^b oscillator strength. ^c H stands for HOMO and L stands for LUMO. Only the main configurations are presented. ^d The CI coefficients are in absolute values. ^e No spin-orbital coupling effect was considered, thus the f values are zero.

Fig. S40 Frontier molecular orbital for Pt-5. Calculated by DFT at the B3LYP/6-31G((d)/ LanL2DZ level using

Gaussian 09.

Table S6. Electronic Excitation Energies (eV) and corresponding Oscillator Strengths (*f*), main configurations and CI coefficients of the Low-Iying Electronically Excited States of complex **Pt-5**, Calculated by TDDFT//B3LYP/6-31G(d)/LanL2DZ, based on the DFT//B3LYP/6-31G(d)/LanL2DZ Optimized Ground State Geometries.

	Electronic		TDDFT//B3LYP/6-31G(d)				
	transition	Ener	gy ^a	$oldsymbol{f}^{ extsf{b}}$	Composition $^{\circ}$	CI ^d	character
Singlet	$S_0 \rightarrow S_1$	2.76 eV	448 nm	0.0020	HOMO−4→LUMO	0.1308	MLCT L'LCT
					HOMO−3→LUMO	0.4078	ILCT MLCT
					HOMO−2→LUMO	0.3511	ILCT
					HOMO−1→LUMO	0.2175	L'LCT MLCT
					HOMO→LUMO	0.1053	L'LCT MLCT
	$S_0 \rightarrow S_3$	3.14 eV	394 nm	0.0425	HOMO−2→LUMO	0.2307	ILCT
					HOMO−1→LUMO	0.5765	L'LCT MLCT
					HOMO→LUMO	0.2151	L'LCT MLCT
	$S_0 \rightarrow S_{10}$	3.75 eV	330 nm	0.1524	HOMO−5→LUMO	0.1879	$\pi \rightarrow \pi^*$ (ppy)/L'LCT
					HOMO−3→LUMO+1	0.5234	MLCT ILCT
					HOMO−1→LUMO+1	0.2556	L'LCT/MLCT/ILCT
	$S_0 \rightarrow S_{18}$	4.14 eV	299 nm	0.2012	HOMO−7→LUMO	0.3564	L'LCT MLCT
					HOMO−5→LUMO+1	0.2248	ILCT L'LCT
					HOMO−1→LUMO+2	0.2935	L'LCT MLCT
Triplet	$S_0 \rightarrow T_1$	2.31 eV	537 nm	0.0000	HOMO-4 \rightarrow LUMO	0.1284	MLCT L'LCT
					HOMO $-3 \rightarrow$ LUMO	0.2725	ILCT MLCT
					HOMO–2 \rightarrow LUMO	0.2983	ILCT
					HOMO-2 \rightarrow LUMO+1	0.2981	ILCT
					HOMO–1 \rightarrow LUMO	0.3822	ILCT LLCT
					HOMO→ LUMO	0.2525	L'LCT MLCT

^a Only the selected low-lying excited states are presented. ^b oscillator strength. ^c H stands for HOMO and L stands for LUMO. Only the main configurations are presented. ^d The CI coefficients are in absolute values. ^e L: diketo moiety; L': Hacac. ^f No spin-orbital coupling effect was considered, thus the f values are zero.

Fig. S41 Phosphorescent emission intensity response of the complexes to step variations of O₂ concentration levels. (a) and (b) **Pt-3**, excitation wavelength λ ex = 419 nm, emission wavelength λ em = 531nm. (c) and (d) **Pt-4**, excitation wavelength λ ex = 403 nm, emission wavelength λ em = 569 nm. (e) and (f) **Pt-5** excitation wavelength λ ex = 423 nm, emission wavelength λ em = 539 nm.

Fig. S42 Fitting of the oxygen sensing property of the IMPEK-C films of complex based on the modified Stern-Volmer equation.

Table S7. parameters of O_2 sensing film of complexes with IMPEK-C as supporting matrix (fitting result of the modified Stern-Volmer equation).

	f	K _{sv}	r ²	pO ₂ /Torr ^a
Pt-1	0.2673	0.0606	0.9993	16.5
Pt-2	0.4027	0.3212	0.9815	3.1
Pt-3	0.3383	0.0079	0.9975	126.6
Pt-4	0.5987	0.0361	0.9981	27.7
Pt-5	0.2486	0.0078	0.9996	128.2

^{*a*} The oxygen partial pressure at which the initial emission intensity of film is quenched by 50 %, and can be calculated as $1/K_{SV}$.

Fig. S43 CIE color coordinates of the ratiometric oxygen sensing. Emission of the complexes in solution under different oxygen concentration $(1.0 \times 10^{-5} \text{ mol dm}^{-3} \text{ in dichloromethane})$. The solution is purged with Ar or mixed O_2/N_2 gas for about 20 min before measurement. (a) Pt-2, $\lambda ex = 350$ nm. (b) CIE chromaticity diagram of the ratiometric oxygen sensing with Pt-2. (c) Pt-4, $\lambda ex = 369$ nm. (d) CIE chromaticity diagram of the ratiometric oxygen sensing with Pt-3. The CIE data are derived from the emission spectra under different O_2 partial pressures.

Signal 1: VWD1 A, Wavelength=390 nm

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	mAU*s	[mAU]	%
1	3.403 PV	0.0561	1.25222	3.39819e-1	2.636e-3
2	5.843 PV	0.1443	5.40478	5.76751e-1	0.0114
3	11.740 PB	0.2898	4.74873e4	2535.85864	99.9621
4	15.620 BB	0.2797	11.36869	5.76275e-1	0.0239

Fig. S44 HPLC of Pt-1.

Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	mAU*s	[mAU]	%
1	3.147 MM	0.0735	1.39858e4	3169.37280	98.7807
2	3.511 MM	0.0944	172.63608	30.49327	1.2193

Fig. S45 HPLC of Pt-2.

End of the supporting information.