10

Electronic supplementary Information Aqueous soft matter based photovoltaic devices

Hyung-Jun Koo, Suk Tai Chang, Joseph M. Slocik, Rajesh R. Naik and Orlin D. Velev*

Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905 (USA). E-mail: odvelev@unity.ncsu.edu

Fig. S1 The effect of dye concentration on photovoltaic performance. When the dye concentration was increased 3 times $(7.5 \times 10^{-8} \text{ mol in each gel layer})$ than that of the prototype device $(2.5 \times 10^{-8} \text{ mol in each gel layer})$, both photovoltaic parameters, J_{sc} and V_{oc} , were improved by 125% and 67%, respectively. The bias was swept from -0.6 V to 0.1 V at a sweep rate of ~9.5 mV/s.

Fig. S2 UV-Vis absorption spectra of DAS⁻ and $[Ru(bpy)_3]^{2+}$ dyes. The energy gaps between the HOMO and LUMO of the DAS⁻ and the $[Ru(bpy)_3]^{2+}$ dyes for the provisional mechanism were estimated from the wavelength values at the maximum ⁵ peak position.

15

Fig. S3 Photocurrent responses of (a) HGPVs and (b) DSSCs under dark and illumination conditions. White and black arrows represent the times when the light was turned on and off, respectively.