Supporting Information

Enhanced Near-Infrared Electrochromism in Triphenylamine-based Aramids Bearing Phenothiazine Redox Centers

By Hung-Ju Yen, and Guey-Sheng Liou*

Functional Polymeric Materials Laboratory, Institute of Polymer Science and

Engineering, National Taiwan University, Taipei, Taiwan

Tel: +886-2-336-5315; Fax: +886-2-336-5237; E-mail: <u>gsliou@ntu.edu.tw</u>

List of Contents for Supplementary Material:

Monomer synthesis	2
Table S1. Inherent Viscosity ^a and Molecular Weights ^b of Polyamides	5
Table S2. Solubility Behavior of Polyamides	7
Table S3. Thermal Properties ^a of Polyamides	<u>8</u>
Table S4. Electrochemical Properties of Model Compounds M1, M2, and M3SI-9	2
Figure S1. (a) ¹ H NMR and (b) ¹³ C NMR spectrum of dinitro compound 3SI-10	<u>)</u>
Figure S2. (a) ¹ H NMR and (b) ¹³ C NMR spectrum of diamine monomer 4	!
Figure S3. H-H COSY spectrum of diamine monomer 4	<u>?</u>
Figure S4. C-H HMQC spectrum of diamine monomer 4	3
Figure S5. IR spectrum of polyamide Ic film	<u>4</u>
Figure S6. (a) ¹ H NMR and (b) ¹³ C NMR spectrum of polyamide Ib <u>SI-14</u>	5
Figure S7. C-H HMQC spectrum of polyamide Ib	5
Figure S8. UV-visible transmission spectra of the polyamide I films	7
Figure S9. TGA thermograms of polyamide Ic at a scan rate of 20 °C/minSI-18	<u>8</u>
Figure S10. TMA curve of polyamide Ia with a heating rate of 10 °C/minSI-19	2
Figure S11. Cyclic voltammograms of polyamide Ic	<u>)</u>
Figure S12. Cyclic voltammetric diagrams of model compounds M1, M2, M3, and	ıd
ferrocene (inset)	<u>l</u>

Monomer synthesis.

N-(4-Nitrophenyl)phenothiazine (1). To a solution of 36.92 g (0.18 mol) of phenothiazine and 27.31 g (0.19 mol) of 4-fluoronitrobenzene in 70 mL of dried dimethyl sulfoxide (DMSO), 29.57 g (0.19 mol) of dried cesium fluoride (CsF) was added with stirring all at once, and the mixture was heated at 120 °C for 24 h under a nitrogen atmosphere. The mixture was slowly poured into 600 mL of stirred methanol, and the precipitated yellow crystals was collected by filtration and washed thoroughly with methanol/water. The product was filtered to afford 53.41 g (91 % in yield) of yellow crystals with a mp of 162-164 °C (measured by DSC at 10 °C/min) (lit.^{SR1} 157 °C). FT-IR (KBr): 1337, 1578 cm⁻¹ (-NO₂ stretch). ¹H NMR (DMSO-*d*₆, δ , ppm): 7.02 (d, 2H, H_b), 7.32 (t, 2H, H_e), 7.45 (t, 2H, H_d), 7.54 (d, 2H, H_e), 7.60 (d, 2H, H_f), 8.08 (d, 2H, H_a). ¹³C NMR (DMSO-*d*₆, δ , ppm): 114.4 (C¹⁰), 125.9 (C⁶), 127.1 (C²), 127.2 (C³), 128.2 (C⁸), 129.2 (C⁷), 133.3 (C⁹), 140.1 (C⁵), 140.6 (C⁴), 150.7 (C¹). Anal. Calcd (%) for C₁₈H₁₂N₂O₂S (320.37): C, 67.48; H, 3.78; N, 8.74. Found: C, 67.49; H, 3.65; N, 8.72. FAB-MS [M]⁺: Calcd., 320.1; Found 320.1.

N-(4-Aminophenyl)phenothiazine (2). In a 500-mL three-neck round-bottomed flask equipped with a stirring bar under nitrogen atmosphere, 7.99 g (24.94 mmol) of

nitro compound **1** and 0.16 g of 10 % Pd/C were dissolved/suspended in 240 mL of ethanol. The suspension solution was heated to reflux, and 4 mL of hydrazine monohydrate was added slowly to the mixture. After the solution was stirred at reflux temperature for 9 h, the solution was filtered to remove Pd/C, and the filtrate was cooled to precipitate transparent crystals. The product was collected by filtration and dried *in vacuo* at 80 °C to give 6.31 g (87 % in yield) of transparent crystals with a mp of 182-183 °C (by DSC) (litt.^{SR1} 132-133 °C). FT-IR (KBr): 3342-3475 cm⁻¹ (N-H stretch). ¹H NMR (DMSO-*d*₆, δ , ppm): 5.44 (s, 2H, NH₂), 6.27 (d, 2H, H_a), 6.75 (t, 2H, H_e), 6.82 (t, 2H, H_d), 6.91 (d, 2H, H_c), 6.96 (d, 2H, H_f), 7.04 (d, 2H, H_b). ¹³C NMR (DMSO-*d*₆, δ , ppm): 115.7 (C²), 115.8 (C³), 118.8 (C¹⁰), 122.3 (C⁶), 126.5 (C⁸), 127.2 (C⁷), 128.1 (C⁴), 131.3 (C⁹), 144.7 (C⁵), 148.8 (C¹). Anal. Calcd (%) for C₁₈H₁₄N₂S (290.38): C, 74.45; H, 4.86; N, 9.65. Found: C, 74.52 ; H, 4.79; N, 9.59. FAB-MS [M]⁺: Calcd., 290.1; Found 290.2.

4,4'-Dinitro-4"-*N***-phenothiazinyltriphenylamine (3).** To a solution of 2.08 g (7.15 mmol) of compound 2 and 2.16 g (15.14 mmol) of 4-fluoronitrobenzene in 15 mL of dried DMSO, 2.39 g (15.58 mol) of dried cesium fluoride was added with stirring all at once, and the mixture was heated at 120 °C for 24 h under nitrogen atmosphere. The mixture was poured into 300 mL of stirred methanol slowly, and the precipitated red powder was collected by filtration and reprecipitated by DMF/methanol. The product was filtered to afford 3.10 g (81 % in yield) of orange

crystals with a mp of 215-216 °C (by DSC). FT-IR (KBr): 1341, 1582 cm⁻¹ (NO₂ stretch). ¹H NMR (DMSO- d_6 , δ , ppm): 6.46 (d, 2H, H_c), 6.92 (t, 2H, H_e), 7.02 (t, 2H, H_d), 7.12 (d, 2H, H_f), 7.31 (d, 4H, H_g), 7.42 (s, 4H, H_a + H_b), 8.20 (d, 4H, H_h). ¹³C NMR (DMSO- d_6 , δ , ppm): 117.8 (C⁶), 121.3 (C¹⁰), 123.2 (C¹²), 123.5 (C⁸), 125.8 (C¹³), 127.1 (C⁹), 127.6 (C⁷), 129.1 (C²), 130.6 (C³), 139.2 (C⁴), 142.5 (C⁵), 143.4 (C¹¹), 143.5 (C¹), 151.7 (C¹⁴). Anal. Calcd (%) for C₃₀H₂₀N₄O₄S (532.57): C, 67.66; H, 3.79; N, 10.52. Found: C, 67.69; H, 3.68; N, 10.42. FAB-MS [M]⁺: Calcd., 532.1; Found 532.1.

4,4'-Diamino-4"-*N***-phenothiazinyltriphenylamine (4).** In a 100-mL three-neck round-bottomed flask equipped with a stirring bar under nitrogen atmosphere, 0.32 g (0.59 mmol) of dinitro compound **3** and 0.07 g of 10 % Pd/C were dissolved/suspended in 12 mL of ethanol. The suspension solution was heated to reflux, and 1 mL of hydrazine monohydrate was added slowly to the mixture. After the solution was stirred at reflux temperature for 9 h, the solution was filtered to remove Pd/C, and the filtrate was cooled to precipitate white crystals. The product was collected by filtration and dried *in vacuo* at 80 °C to give 0.24 g (84 % in yield) of white crystals with a mp of 183-185 °C (by DSC). FT-IR (KBr): 3215, 3338 cm⁻¹ (N-H stretch). ¹H NMR (DMSO-*d*₆, δ , ppm): 5.06 (s, 4H, -NH₂), 6.24 (d, 2H, H_c), 6.18 (d, 4H, H_h), 6.76-6.79 (m, 4H, H_a + H_e), 6.88 (t, 2H, H_d), 6.97 (d, 6H, H_f + H_g), 7.03 (d, 2H, H_b). ¹³C NMR (DMSO-*d*₆, δ , ppm): 115.1 (C¹³), 115.8 (C⁶), 117.0 (C⁸),

118.8 (C¹⁰), 122.4 (C²), 126.6 (C⁹), 127.3 (C⁷), 128.2 (C¹²), 129.0 (C⁴), 131.0 (C³), 135.4 (C¹¹), 144.5 (C⁵), 146.4 (C¹⁴), 149.7 (C¹). Anal. Calcd (%) for C₃₀H₂₄N₄S (472.60): C, 76.24; H, 5.12; N, 11.85. Found: C, 75.95; H, 5.15; N, 11.52. FAB-MS [M]⁺: Calcd., 472.2; Found 472.2.

Reference

SR1. Gilman, H.; Shirley, D. A. J. Am. Chem. Soc. 1944, 66, 888.

polymer	η _{inh} (dL/g)	$M_{ m w}$	M _n	PDI ^c	DP^d
Ia	0.36	47100	31300	1.50	51
Ib	0.29	38500	25300	1.52	42
Ic	0.35	160900	79400	2.03	114
Id	0.29	51700	36700	1.41	44

Table S1. Inherent Viscosity^{*a*} and Molecular Weights^{*b*} of Polyamides

^{*a*} Measured at a polymer concentration of 0.5 g/dL in DMAc at 30 °C.

^b Calibrated with polystyrene standards, using DMF as the eluent at a constant flow rate of 1 mL/min at 70 °C.

^{*c*} Polydispersity Index (M_w/M_n) .

^{*d*} Degree of Polymerization.

Code	Solubility in various Solvent ^a							
	NMP	DMAc	DMF	DMSO	<i>m</i> -Cresol	THF	CHCl ₃	
Ia	+ +	+ +	+ +	+ +	+ +	+ -	+ -	
Ib	+ +	+ +	+ +	+ +	+ +	+ -	+ -	
Ic	+ +	+ +	+ +	+	+ +	+ -	+ -	
Id	+ +	+ +	+ +	+ +	+ +	+ +	+ -	

 Table S2. Solubility Behavior of Polyamides

^a The solubility was determined with a 10 mg sample in 1 mL of a solvent. + +, soluble at room temperature; +, soluble on heating; + -, partially soluble or swelling; -, insoluble even on heating.

Code	$T_{g}(^{o}C)^{b}$	$T_s(^{o}C)^{c}$	$T_d^{5} (^{\circ}C)^d$		$T_d^{10} (^{\circ}C)^e$		Char Yield
			N_2	Air	N ₂	Air	- (wt %)
Ia	255	253	450	435	500	485	67
Ib	274	275	510	510	585	570	77
Ic	277	274	490	485	570	565	73
Id	276	274	510	515	575	560	71

 Table S3. Thermal Properties^a of Polyamides

^{*a*} The polymer film samples were heated at 300 °C for 1 h prior to all the thermal analyses.

^b Midpoint temperature of baseline shift on the second DSC heating trace (rate: 20 °C/min) of the sample after quenching from 400 °C to 50 °C (rate: 200 °C /min) in nitrogen.

^c Softening temperature measured by TMA with a constant applied load of 50 mN at a heating rate of 10 °C/min.

^{*d*} Temperature at which 5 % weight loss occurred, recorded via TGA at a heating rate of 20 °C/min and a gas-flow rate of 20 cm³/min.

^e Temperature at which 10 % weight loss occurred.

^fResidual weight percentage at 800 °C under nitrogen flow.

	1	1 , ,		
	Oxidati	on potential (V)		
Code	(vs. Ag/AgCl in CH ₃ CN)			
	$E_{1/2}{}^{a}$	E_{onset}		
M1	0.79	0.73		
M2	0.82	0.75		
M3	_ <i>b</i>	0.96		

Table S4. Electrochemical Properties of Model Compounds M1, M2, and M3

^{*a*} $E_{1/2}$ (Average potential of the redox couple peaks). ^{*b*} The oxidation redox couples is irreversible.

Figure S1. (a) ¹H NMR and (b) ¹³C NMR spectrum of dinitro compound 3 in DMSO- d_6

DMSO- d_6

Figure S3. H-H COSY spectrum of diamine monomer 4 in DMSO-*d*₆.

Figure S4. C-H HMQC spectrum of diamine monomer 4 in DMSO-*d*₆.

Figure S5. IR spectrum of polyamide Ic film.

Figure S7. C-H HMQC spectrum of polyamide Ib in DMSO-*d*₆.

Figure S8. UV-visible transmission spectra of the polyamide I films (thickness $\sim 5 \mu m$)

Figure S9. TGA thermograms of polyamide Ic at a scan rate of 20 °C/min.

Figure S10. TMA curve of polyamide Ia with a heating rate of 10 °C/min.

Figure S11. Cyclic voltammograms of polyamide **Ic** film on an ITO-coated glass substrate in CH₃CN (oxidation) and DMF (reduction) solutions containing 0.1 M TBAP at scan rate of 50 and 200 mV/s, respectively.

Figure S12. Cyclic voltammetric diagrams of model compounds M1, M2, M3, and ferrocene (inset) in CH_3CN solutions containing 0.1 M TBAP at a scan rate of 50 mV/s.