Supporting Information

Photo-response Behavior of Electrospun Nanofibers Based on Spiropyran-Cyclodextrin Modified Polymer.

Frederico B. De Sousa^{a,b}, João D. T. Guerreiro^{b,c}, Minglin Ma^d, Daniel G. Anderson^b,

Chester L. Drum^b, Rubén D. Sinisterra^{a*} and Robert Langer^b

^aLaboratório de Encapsulamento Molecular e Biomateriais (LEMB) – Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901, MG, Brazil.

^bDepartment of Chemical Engineering, 77 Massachusetts Avenue, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

^cInstitute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering, Instituto Superior Técnico, Lisboa, Portugal.

^dDavid H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA. Department of Anesthesiology, Children Hospital Boston, 300 Longwood Avenue, Boston, MA, 02115, USA.

Corresponding author:	Rubén Dario Sinisterra
	Departamento de Química, Instituto de Ciências Exatas,
	UFMG, Belo Horizonte, 31270-901 Brazil
	Phone: 55-31-3409-5778; fax: 55-31-3409-5700
	Email: <u>sinisterra@ufmg.br</u>

SI 1 – Nuclear Magnetic Resonance

 1 H NMR spectrum of β CD_{SP} in DMSO_{d6} at 600 MHz at 30 $^{\circ}$ C.

Mass spectrum for the mono- βCD -spiropyran, $m/z_{calculated}$ 1496.5 and $m/z_{observed}$ 1497.4

¹H NMR spectrum of PMAA_{SP} in DMSO_{d6} at 600 MHz at 30 $^{\circ}$ C.

Merocyanine forms after UV irradiation of (a) βCD_{SP} , (b) PMAA- βCD_{SP} and (c) PMAA_{SP} and Spiro forms after visible light irradiation of (d) βCD_{SP} , (e) PMAA- βCD_{SP} and (f) PMAA_{SP}.

Water contact angles for a) PMAA- β CD_{SP} after 24 hours visible light irradiation and b) PMAA- β CD_{MC} after 24 hours UV light irradiation.

SI 7 – Spin coating

Briefly, 0.3 mL of polymer solution was placed on a glass slide; a rotation velocity of 400 rpm for 5 seconds was used with a posterior rotation of 2300 rpm for 50 seconds. The glass slides were placed in oven at 170 $^{\circ}$ C for 12 hours to cross-link the polymer, after that, one was irradiated with UV while another one with visible light for 24 hours.

Spin coating films of PMAA-βCD_{SP} under UV light to demonstrate the fluorescence behavior of merocyanine incorporated in the polymer matrix with previous (a) UV light irradiation and (b) visible light irradiation.