Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010

Polyaniline-Tungsten Oxide Metacomposites with Tunable Electronic Properties

Jiahua Zhu¹, Suying Wei^{2*}, Lei Zhang¹, Yuanbing Mao³, Jongeun Ryu⁴, Amar B. Karki⁵, David P. Young⁵ and Zhanhu Guo^{1*}

> ¹Integrated Composites Laboratory (ICL) Dan F Smith Department of Chemical Engineering Lamar University, Beaumont, TX 77710, USA

²Department of Chemistry and Biochemistry Lamar University, Beaumont, TX 77710, USA

³Applied Sciences laboratory, Washington State University, Spokane, WA 99210, USA

⁴Department of Mechanical & Aerospace Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA

⁵Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA

* Corresponding author: <u>zhanhu.guo@lamar.edu</u>; Phone: (409) 880-7654 <u>suying.wei@lamar.edu</u>; Phone: (409) 880-7976 Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supporting Materials

The crystalline structures of the NPs and NRs are determined by XRD. After running the XRD, the crystalline structure of both WO₃ NPs and WO₃ NRs are clearly identified. The XRD patterns of WO₃ NPs (Figure 1) match well to the monoclinic WO₃^[1-5] and the strong intensity of the diffraction peaks indicate a highly crystalline structure. The diffraction peaks (20) at 23.1, 23.6, 24.4, 26.6, 28.9, 33.3, 34.2 and 36.2° are assigned to the (002), (020), (200), (120), (112), (022), (202) and (212) planes of the monoclinic WO₃, respectively. The XRD patterns of the WO₃ NRs are highly consistent with the other work, unorthodox structure.^[6] However, it is worth noting that the XRD pattern of the WO₃ NRs (Figure S1) is quite unusual in comparison to the WO₃ NPs. Preferentially oriented nanorods with limited crystal faces satisfying the Bragg requirements might be a major contribution to this unorthodox distribution of the diffraction peaks.

The lattice elongation direction of the WO₃ nanorods is clearly identified from HRTEM and SAED characterizations in prior reported work which grows along the (0002) direction.^[6]

Figure S1 XRD patterns of WO₃ NPs and WO₃ NRs.

References

- 1. G. Wang, Y. Ji, X. Huang, X. Yang, P.-I. Gouma and M. Dudley, J. Phys. Chem. B, 2006, 110, 23777-23782.
- 2. V. Luca, M. G. Blackford, K. S. Finnie, P. J. Evans, M. James, M. J. Lindsay, M. Skyllas-Kazacos and P. R. F. Barnes, *J. Phys. Chem. C*, 2007, **111**, 18479-18492.
- 3. B. Yang, Y. Zhang, E. Drabarek, P. R. F. Barnes and V. Luca, *Chem. Mater.*, 2007, **19**, 5664-5672.
- 4. S. V. Pol, V. G. Pol, V. G. Kessler, G. A. Seisenbaeva, L. A. Solovyov and A. Gedanken, *Inorg. Chem.*, 2005, **44**, 9938-9945.
- 5. Q. Zhang, A. K. Chakraborty and W. I. Lee, Bull. Korean Chem. Soc., 2009, 30, 227-229.
- 6. J. Wang, E. Khoo, P. S. Lee and J. Ma, J. Phys. Chem. C, 2008, 112, 14306-14312.