This journal is (c) The Royal Society of Chemistry 2010

Direct white light emission from inorganic-organic hybrid semiconductor bulk materials

Wooseok Ki ^{a†}, Jing Li ^{a*}, Goki Eda ^{b‡}, and Manish Chhuwalla ^b

^a Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road,
Piscataway, NJ 08854, USA. Fax: 732-445-5312; Tel: 732-445-3758; E-mail:
Jingli@rutgers.edu

Supplementary Information

^bDepartment of Materials Science and Engineering, Rutgers University, 607 Taylor Road, Piscataway, NJ 08854,USA

[†] Current address: School of Chemical Engineering, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN 47907, USA

[‡] Current address: Department of Materials, Imperial College London Exhibition Rd., London SW7 2AZ, UK

This journal is (c) The Royal Society of Chemistry 2010

Fig. S1. Photoluminescence emission spectra taken at various excitation wavelength. The emission characteristics remain the same over the entire excitation wavelength range between 320 and 380 nm.

Fig. S2. I-V characteristics of a thin pellet of $[Cd_2Se_2(ba)]$:25mol% Te as a function of temperature.