Supplementary materials caption:

Table S1: Elemental analysis.

Scheme 1a: Two models for building block of MIL-100(Fe)noF (a) and (b), trimeric iron moiety with trimesate (c) and supertetrahedron (d).

Scheme 1b: Representation of the structure isotype to MTN zeolithe(each vertex represent a tetrahedron)(a), 6^45^{12} cavity connected together by their four hexagonal windows (b), 6^45^{12} cavity of MIL-100Fe(c), $PMo_{12}O_{40}^{3-}$ with d_{0-0} in Å (d), suggestion of 5^{12} cavity of MIL-100Fe with $PMo_{12}O_{40}^{3-}$ (e), suggestion of 5^{12} cavity of MIL-100Fe with $PMo_{12}O_{40}^{3-}$ (f).

Figure S1: X-Ray thermodiffraction patterns performed each 10°C from 20°C to 430°C for MIL-100Fe noF (upper) and $H_3PMo_{12}@$ MIL-100Fe noF (lower).

Figure S2: X-Ray diffraction patterns of MIL-100(Fe)noF(upper), Na₂HPMo₁₂O₄₀/ MIL-100(Fe)noF and H₃PMo₁₂O₄₀@MIL-100(Fe)noF.

Figure S3: Nitrogen sorption-desorption isotherms at 78 K ($P_0=1$ atm.) (a) and Horvath-Kawazoe porous distribution (b) of MIL-100(Fe)noF (1) , Na₂HPMo₁₂/MIL-100(Fe)noF (2) and MIL-100(Fe) synthesised in presence of $H_3PMo_{12}O_{40}$ (3).

Table S1: Elemental analysis

	MIL-100Fe noF		H ₃ PMo ₁₂ O ₄₀ @		Na ₂ HPMo ₁₂ O ₄₀ /	
			MIL-100Fe noF		MIL-100Fe noF	
		théo		théo		théo
Fe	19,58		11,51		15,87	
С	26,39		20,00		18,80	
Р	1		0,76		0,12	
Мо	1		18,85		3,76	
Na	1		1		0,14	
CI	<200ppm		<200ppm		<200ppm	
C/Fe	6,27	6	8,09	6	5,5	6
Mo/Fe	1		0,95		0,14	
Na/HPA	1		1		1,75	

Supplementary material (ESI) for Journal of Materials Chemistry This journal is The Royal Society of Chemistry 2010

Scheme 1a: Two models for building block of MIL-100(Fe)noF (a) and (b), trimeric iron moiety with trimesate (c) and supertetrahedron (d).

Scheme 1b: Representation of the structure isotype to MTN zeolithe(each vertex represent a tetrahedron)(a), 6^45^{12} cavity connected together by their four hexagonal windows (b), 6^45^{12} cavity of MIL-100Fe(c), PMo₁₂O₄₀³⁻ with d₀₋₀ in Å (d), suggestion of 5^{12} cavity of MIL-100Fe with PMo₁₂O₄₀³⁻(e), suggestion of 5^{12} cavity of MIL-100Fe with PMo₁₂O₄₀³⁻(f).

Supplementary material (ESI) for Journal of Materials Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Figure S1: X-Ray thermodiffraction patterns performed each 10°C from 20°C to 430°C for MIL-100Fe noF (upper) and $H_3PMo_{12}@$ MIL-100Fe noF (lower).

Supplementary material (ESI) for Journal of Materials Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Figure S2: X-Ray diffraction patterns of MIL-100(Fe)noF(upper), $Na_2HPMo_{12}O_{40}/MIL-100(Fe)noF$ and $H_3PMo_{12}O_{40}@MIL-100(Fe)noF$.

Supplementary material (ESI) for Journal of Materials Chemistry This journal is $\ensuremath{\mathbb{C}}$ The Royal Society of Chemistry 2010

Figure S3: Nitrogen sorption-desorption isotherms at 78 K ($P_0=1$ atm.) (a) and Horvath-Kawazoe porous distribution (b) of MIL-100(Fe)noF (1) , Na₂HPMo₁₂/MIL-100(Fe)noF (2) and MIL-100(Fe) synthesised in presence of $H_3PMo_{12}O_{40}$ (3).