Infrared-Transparent Polymer Solar Cells

Xinyuan Xia,¹ Shanshan Wang,¹ Yi Jia,² Zuqiang Bian,^{1,*} Dehai Wu,² Luhui Zhang,³ Anyuan Cao,^{3,*} Chunhui Huang¹

¹ Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China

² Key Laboratory for Advanced Materials Processing Technology and Department of Mechanical Engineering, Tsinghua University, Beijing 100084, P. R. China

³ Department of Advanced Materials & Nanotechnology, College of Engineering, Peking University, Beijing 100871, P. R. China

Supplementary information

Table S1. J-V characteristics of solar cells with metal or CNT film electrodes.

Table S2. *J-V* characteristics of CNT cell, $CuPc/C_{60}$ cell and Si standard cell as well as utilization of transmitted light from CNT cell.

Figure S1. Fabrication of the CNT transparent electrode on the P3HT: PCBM layer.

Figure S2. Energy diagrams of the top and bottom cell in our tandem structure.

Figure S3. SEM image of as-synthesized CdSe nanobelts on a silicon oxide substrate by chemical vapor deposition and used for making photo-sensors.

	CNT Cell		Control Cell
	Front side	Backside	
$V_{ m oc}({ m V})$	0.57	0.54	0.52
$J_{\rm sc}~({\rm mA/cm}^2)$	10.84	7.31	11.48
FF (%)	40.2	37.5	41.0
PCE (%)	2.48	1.48	2.45

Table S1. J-V characteristics of solar cells with CNT film or metal (control sample) electrodes.

Table S2. *J-V* characteristics of CNT cell, $CuPc/C_{60}$ cell and Si standard cell as well as utilization of transmitted light from CNT cell.

	$V_{ m oc}\left({ m V} ight)$	$J_{\rm sc}~({\rm mA/cm}^2)$	FF (%)	PCE (%)
CNT cell (top	0.54	8.10	46.3	2.03
CuPc cell	0.47	4.57	55.5	1.19
(uncovered)	0.36	1 81	52.0	0.34
by the CNT cell)	0.50	1.01	52.9	0.34
CNT and CuPc	0.44	10.53	50.3	2.33
CNT and CuPc	0.92	1.65	65.5	1.00
Si cell	0.51	33.85	65.2	11.26
Si cell (covered by the CNT cell)	0.47	14.95	59.9	4.21

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010

Figure S1. Fabrication of CNT transparent electrode on the P3HT: PCBM layer.

Figure S2. Energy diagrams of the top and bottom cell in our tandem structure.

Figure S3. SEM image of as-synthesized CdSe nanobelts on a silicon oxide substrate by chemical vapor deposition and used for making photo-sensors.