Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supporting Information

Liquid Crystalline Phthalocyanine-Fullerene Dyads

Mine Ince,^{*a*} M. Victoria Martínez-Díaz,^{*a**} Joaquín Barberá,^{*b**} and Tomás Torres^{*a,c**}

^a Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco 28049-Madrid, Spain. E-mail: <u>tomas.torres@uam.es</u>

^b Departamento de Química Orgánica-ICMA, Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain. E-mail: <u>jbarbera@unizar.es</u>

^c IMDEA-Nanociencia. Facultad de Ciencias, Cantoblanco, 28049-Madrid, Spain

Figure S2. ¹H NMR and MS spectra of Pc 8.

Figure S3. ¹H NMR and MS spectra of Pc 9.

Figure S4. ¹H NMR and MS spectra of Pc 11.

Figure S5. ¹H NMR and MS spectra of $Pc-C_{60}$ dyad 1.

- 2793.2

3000

3500

4000

2500

1703.3

2000

1477.2

1500

Figure S6. ¹H NMR and MS spectra of $Pc-C_{60}$ dyad 2.

0.2

0.0

1000

Figure S7. The DSC curves and texture of symmetric Pc 6 between crossed polarizers.

Figure S8. The DSC curves and texture of Pc 7 between crossed polarizers.

Figure S9. The DSC curves and texture of Pc 8 at 50 °C between crossed polarizers cooling from the isotropic liquid (120 °C).

.

Compound		Phase	d _{meas} (Å)	d _{calc} (Å)	hk	Lattice
	Temperature					constants (A)
	(°C)					
	400	Oal	00.4	<u> </u>	1.0	
2	108	COI_r	60.4 25.4	00.0 25.4	10	a = 60
Z		(pzgg)	20.4	20.4	30	D = 20
			20.0	20.0	30	
			14.1	14.0	02	
			4.7 ^{b)}	11.0	02	
6	131	Col _h	27.4	27.2	10	<i>a</i> = 31.4
			16.1	15.7	11	<i>h</i> = 3.6
			13.1	13.6	20	
			10.3	10.3	21	
			4.7^{b}			
	400	0.1	3.6 %	40.0	1.0	
	190	COl _r	42.3	42.0	10	a = 42
		(pzgg)	29.9	30.0	11	D = 30
			24.0	24.4	20	
			17.0	17.2	21	
			13.9	14.1	12	
				14.0	30	
			12.4	12.7	31	
				12.2	22	
			9.8	9.9	4 1	
			F.)	9.7	13	
			4.9 ^{b)}			

Table S1. X-ray data for the mesophases of compoundss 2, 6 and 7 ^{a)}.

^{a)} d_{meas} and d_{calc} are the measured and calculated diffraction spacing; *hk* are the indexations of the reflections corresponding to the two-dimensional lattice of the Col_r or Col_h phase; *a, b* are the lattice parameters of the Col_r phaseⁱ *a* is the lattice parameter of the Col_h phase; *h* is the mean stacking distance. ^{b)} Diffuse maximum