Supplementary Information for Preparation, Magnetism and Electronic Structures of Cadmium Technetates

Efrain E. Rodriguez^{*†} Frédéric Poineau[‡] Anna Llobet [§] Joe D. Thompson[¶] Ram Seshadri^{\parallel} Anthony K. Cheetham^{**}

September 14, 2010

1 Further details on synthesis

[**Caution:** ⁹⁹Tc is radioactive with a specific activity of 17 mCi/gram. To prevent contamination and ensure personal safety, all preparations were performed in a fume hood. A polycarbonate shield with a thickness of 1 cm was used when manipulating the powders. In addition, standard practices of a radiochemistry laboratory must be followed.]

The CdTcO₃ phase was prepared by heating a stoichiometric mixture of CdO and TcO₂ at 850 $^{\circ}$ C in a fused quartz boat under flowing Ar gas for 12 hours. The start-

^{*}NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA, corresponding author, efrainr@nist.gov

[†]Manuel Lujan Neutron Scattering Center,Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

[‡]Harry Reid Center for Environmental Studies, University of Nevada, Las Vegas, Nevada 89154-4009, USA

[§]Manuel Lujan Neutron Scattering Center,Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

[¶]Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

^{||}Materials Department and Materials Research Laboratory, University of California, Santa Barbara, CA 93106

^{**}Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK

ing powders were first ground in a mortar and pestle as a methanol slurry. The CdO was purchased from Sigma-Aldrich and TcO_2 was prepared by thermal decomposition of NH₄TcO₄ as described in previous work.[?] The resulting powder, which appears light grey metallic, was treated with 2M HCl to remove any remaining CdO and subsequently washed with water and acetone. Preliminary powder XRD data showed a pattern with Bragg peaks matching the orthorhombic lattice of the perovskite CdTiO₃.

Similarly, we used Tc_2O_7 as a starting material to react with Cd metal, previously cleaned with 2M HCl to remove any oxide on the surface. For the preparation of Tc_2O_7 , TcO_2 was combusted in pure, dry oxygen in a sealed quartz ampoule heated to 450 °C for two hours. The pure oxygen atmosphere can be established by backfilling the tube with dry oxygen, isolating it from the double vacuum/gas lines, and dipping it in a liquid nitrogen bath to condense the O_2 gas while torch sealing. Extreme caution must be followed during this last procedure to avoid condensing too much O_2 since this can lead to dangerous over-pressurization in a closed system, and liquid O_2 will readily ignite organics.

Previous preparations of the heptoxide in the literature included combusting Tc metal in a stream of oxygen gas, which always produced a pink or red volatile oxide that could not be separated from the product due to its similar volatility. ^{1–3} We find our preparation of Tc₂O₇ to be an improvement since it always led to bright yellow Tc₂O₇ with no sign of a reduced, colored species. Also, our preparation lowers the risk of ⁹⁹Tc contamination since it is performed in a closed system. The heptoxide is extremely hygroscopic and readily reduced by organics. A typical preparation used 40 mg of TcO₂ sealed in a 20 cm quartz tube (outer diameter = 10 mm, wall thickness of 1.5 mm) with an approximate O₂ pressure of 2.5 atm at room temperature.

After complete oxidation of TcO_2 to Tc_2O_7 , the tube was opened and a stoichiometric amount of clean Cd metal inserted (2:1 ratio for metal: Tc_2O_7). The tube was then immediately connected to the vacuum/Ar double manifold to purge the oxygen atmosphere and subsequently sealed under vacuum. The reactants were heated to 800 °C for ten hours and then furnace cooled. The product appeared as clusters of bluegreen metallic crystals. Lacking a quality single crystal, the product was cleaned with 2M HCl and ground into a powder. The XRD powder pattern indicated a highly crystalline, cubic cell with Bragg peaks matching those of $Cd_2Re_2O_7$. Care must be taken to remove any moisture from the system as Tc_2O_7 will take up water to form $HTcO_4$ and the subsequent reaction with Cd metal will lead to the formation of a water soluble, yellow powder, presumably the known salt $Cd(TcO_4)_2$.

2 High-resolution X-ray diffraction and magnetometry

To obtain the structures of the new Cd-Tc-O phases, powder diffraction studies were performed. Since ¹¹³Cd has a prohibitively high neutron absorption cross-section and accounts for nearly 12% of naturally abundant Cd, XRD studies were pursued instead of neutron powder diffraction. However, laboratory X-rays do not provide enough information at high 2 θ or enough resolution, so high-resolution synchrotron powder XRD measurements were performed to obtain accurate structural parameters. The powder patterns of CdTcO₃ and Cd₂Tc₂O₇ were collected with the high-resolution beamline 11-BM diffractometer at the Advanced Photon Source at Argonne National Laboratory. The powder samples were doubly encased in Kapton tubing, and mounted onto a rotating platform for better averaging of the powder pattern. For both samples, diffraction patterns were collected at beam energies of 15 keV ($\lambda = 0.82654$ Å) and 30 keV ($\lambda = 0.41326$ Å).

For the SQUID magnetometry measurements, the powder samples of $Cd_2Tc_2O_7$ and $CdTcO_3$ were measured at 0.1 T and 5 T from 2 K to 300 K. The samples, doubly contained in plastic tubes and gelatin caps, were cooled with no field down to 10 K where the field was turned on upon cooling down to 2 K; the susceptibility was then measured upon heating up to 300 K under the 0.1 T or 5 T field and corrected for the weak contribution from sample-encapsulation tubes.

3 Electronic structure calculations

To investigate the electronic band structure of $Cd_2Tc_2O_7$ and $CdTcO_3$, linear muffintin orbital (LMTO) calculations were performed within the atomic sphere approximation.^{4,5} The scalar-relativistic Kohn-Sham equations were solved within the generalized gradient approximation.⁶ For $Cd_2Tc_2O_7$, the calculations were performed on 72 irreducible *k* points within the primitive wedge of the Brillouin zone; 245 irreducible *k* points were used for CdTcO₃ since it has lower symmetry than $Cd_2Tc_2O_7$. The crystal structures reported in the Results section were used for the calculations of the electronic density of states (DOS). Since the DOS of CdTcO₃ indicated possible magnetic instability (large density of states at the Fermi level), nonspin and spin-polarized calculations were run. In the case of the spin-polarized calculations, two separate magnetic structures were chosen: a ferromagnetic arrangement of the Tc moments and an antiferromagnetic arrangement of the Tc moments. The Stuttgart TB-LMTO-ASA program (version 47C) was used for all the computational work.⁷

References

- G. E. Boyd, J. W. Cobble, C. M. Nelson and W. T. Smith, *J. Am. Chem. Soc.*, 1952, 74, 556–557.
- [2] A. Y. Herrell, R. H. Busey and K. H. Gayer, Inorg. Synth., 1977, 17, 155–158.
- [3] A. Y. Herrell, Ph.D, Wayne State University, 1973.
- [4] O. K. Andersen, Phys. Rev. B, 1975, 12, 3060.
- [5] O. Jepsen and O. K. Andersen, Z. Phys. B, 1995, 97, 35.
- [6] J. P. Perdew and W. Yue, Phys. Rev. B, 1986, 33, 8800-8802.
- [7] O. Jepsen and O. K. Andersen, *The Stuttgart TB-LMTO-ASA Program version 47*, MPI für Festkörperforschung, Stuttgart, Germany, 2000.