Preparation of Zirconium tetrakis(8-hydroxyquinolinate) [α-ZrQ₄]

8-Hydroxyquinoline, 99+% (Aldrich) (100 g; 0.69 mole) was dissolved in tetrahydrofuran, 99+% (ACS reagent) (400 ml). To the magnetically stirred solution was added zirconium isopropoxide (66.8 g; 0.17 mole) in tetrahydrofuran (175 ml), all at once. A yellow precipitate formed immediately. The reaction mixture was magnetically stirred and refluxed under nitrogen for 2 hours. After cooling the reaction mixture in the refrigerator the product was filtered off under suction, washed with fresh tetrahydrofuran and dried under vacuum at 80 °C for 10 hours. Yield 101 g (88 %), mp 388 °C (DSC, onset). The product was sublimed at 340 °C (2 x 10⁻⁶ Torr) to give a sublimation yield of 91 %. Overall yield was 81%. Found: C; 64.49, H; 3.57, N; 8.33, Zr; 13.79, Cl < 0.10. C₃₆H₂₄N₄O₄Zr requires, C; 64.75, H; 3.62, N; 8.39, Zr; 13.66 %. The trace elements analysis: Fe <1 ppm, Cr<1 ppm, Co<1 ppm, Co <1 ppm, Ni< 1 ppm, Al<1 ppm, Cu <1 ppm, Mo < 1 ppm, Ta < 25 ppm , Pt < 1 ppm, Ti < 2 ppm, Hf 5 ppm and W < 1ppm.

Preparation of Zirconium tetrakis(8-hydroxyquinolinate) [β-ZrQ₄]

Ethanol was dried over potassium hydroxide and distilled before use.

To a solution of 8-hydroxyquinoline (100.0 g; 0.69 mol) in ethanol, 95% (700 ml) was carefully added zirconium (IV) chloride (40.2 g; 0.17 mol) in ethanol (200 ml) at 10 °C (The solution was cooled in an ice-water bath). After 10 minutes, the solution was warmed to 50 °C and piperidine (75 ml; 0.76 mole) was slowly added, during which time a vellow precipitate separated out. The suspension was refluxed for 1h, and allowed to cool to room temperature. The precipitate was collected by suction filtration on a Buchner funnel, washed thoroughly with ethanol, tetrahydrofuran and finally with diethyl ether. The product was dried under vacuum at 80 °C. Crude yield 106.5 g (93 %). Further purification of the product (65 g) was performed by Soxhlet extraction (65 g) with 1,4-dioxane for 24 h. Concentration of the extract yielded a yellow precipitate which was collected on a Buchner funnel and washed with ethanol, (95%; 100 ml). The product was dried under vacuum at 80 °C for 8h. Yield, 50 g (77 %), mp., 388 °C (DSC, onset). The product was further purified by sublimation to give a sublimed yield of 92 %. Overall yield was 66 %. Found C 64.42, H 3.58, N 8.16 ,Zr 13.54 , Cl < 0.10. $C_{36}H_{24}N_4O_4Zr$ requires, C 64.75, H 3.62, N 8.39 and Zr13.66 %. The trace elements analysis: Fe 5ppm, Cr<1ppm, Co<1ppm, Ni <1ppm, Al <1ppm, Cu < 1ppm, Mo<1 ppm, Ta 23 ppm, Pt < 1ppm, Ti<1 ppm, Hf 6ppm, W< 1ppm.

Fig. 16: ¹H NMR of α -Zrq₄ in DMSO-d⁶

Fig. 17: 13 C NMR of α -Zrq₄ in DMSO-d⁶

Fig. 18: ¹H NMR of β -Zrq₄ in DMSO-d⁶

Fig. 19: 13 C NMR of β -Zrq₄ in DMSO-d⁶

Fig. 20: Chemical ionization mass spectra of α -Zrq₄ and β - Zrq₄

Table S.1. Selected hydrogen-bond and contact parameters

a-form:

D—H…A	D—H (Å)	H…A (Å)	<i>D</i> …A (Å)	D—H··· A (°)	
C7—H7…O4 ⁱ	0.95	2.49	3.430 (3)	171	

Cg(I) Res(I) Cg(J) [ARU(J)] Cg-Cg Transformed J-Plane P, Q, R, S Alpha Beta Gamma CgI_Perp CgJ_Perp Slippage Cg(6) [1] -> Cg(6) [3755.01] 3.4983(14) -0.2617-0.9035-0.3394 -1.1877 0 2.14 2.14 -3.4958(10) -3.4958(10) 0.130 [3755] = 2-X, -Y, -Z

Analysis of X-H...Cg(Pi-Ring) Interactions (H..Cg < 3.0 Ang. - Gamma < 30.0 Deg)

XH(I) Res(I) Cg(J) XCg X-H,Pi	[ARU(J)] HCo	Transformed J-Plane P, Q, R, S	H-Perp Gamma	X-HCg				
C(5) -H(5) [1] -> Cg(3) 3.386(3) 17	[2655.01] 2.93	0.6763 0.1501-0.7212 -1.1311	2.92 3.82	111				
C(16) -H(16) [1] -> Cg(7) 3.776(3) 61	[3755.01] 2.99	-0.7067 0.1607 0.6890 -12.3309	2.67 26.85	141				
C(35) -H(35) [1] -> Cg(5) 3.608(3) 61	[4555.01] 2.91	-0.3223 0.2219 0.9203 9.5782	-2.73 20.25	131				
3.386 61	Min or Max 2.9	10	-2.730 3.82	141				
[2655] = 1-X,1/2+Y,1/2-Z [3755] = 2-X,-Y,-Z [4555] = X,1/2-Y,1/2+Z								

β-form:

No centroid-centroid distances below 3.95 Å.

Analysis of	X-HCg(P	i-Ring)	Int	ceractions	(HCg < 3.0) Ang Gamma	< 30.0 I	Deg)			
XН(I) XCg X-Н,Р	Res(I)	Cg(J)	[ARU(J)]	HCg	Transformed J	-Plane P,	Q, R, S	H-Perp	Gamma	X-HCg
C(4) -H(4) [1] ->	Cg (6)	[4575.01]	2.94	-0.6483-0.2435	0.7214	-8.4560	2.81	17.28	143
C(16) -H(1 3.704(3)	6) [1] ->	Cg(7)	[3554.01]	2.91	-0.8843 0.0226	-0.4664	-1.6284	-2.74	20.13	144
C(24) -H(2 3 457(3)	4) [1] ->	Cg(3)	[2675.01]	2.94	-0.1214 0.2262	0.9665	16.2743	-2.60	27.67	117
C(27) -H(2 3 521(3)	7) [1] ->	Cg(8)	[4575.01]	2.95	0.5336 0.0718	0.8427	16.4543	-2.89	12.10	121
С(35) -H(3 3.790(3)	5) [1] -> 65	Cg(7)	[4475.01]	2.92	0.8843-0.0226	-0.4664	-6.0585	2.64	24.98	157
3.457	72			Min or M	Max 2.910				-2.889	12.10	157

[4575] = 1/2+x,2-y,z [3554] = 1/2-x,Y,-1/2+z [2675] = 1-x,2-Y,1/2+z [4475] = -1/2+x,2-Y,Z

