Supporting Information for:

A 2,7-Linked Carbazole Based "Double Cable"
 Polymer with Pending Perylene Diimide Functional Groups: Preparation and Photovoltaic Properties

David K. Mohamad ${ }^{2}$, Achim Fischereder ${ }^{1}$, Hunan Yi ${ }^{l}$, Ashley J. Cadby ${ }^{2}$, David G. Lidzey * ${ }^{2}$ and Ahmed Iraqi. *l
${ }^{1}$ Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom.
${ }^{2}$ Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom.

1. Material preparation and analysis techniques.

Materials: 2,7-Dibromo-3,6-dimethyl-9-(2-hexyldecyl)-9H-carbazole [1], 5,5'-bis(tri-n-butylstannyl)-2,2'-bithiophene [2] were prepared according to established literature procedures. Tetrahydrofuran (THF) was distilled over sodium-benzophenone under inert nitrogen atmosphere. Toluene was dried and distilled over sodium under an inert argon atmosphere. Acetonitrile (HPLC grade) was dried and distilled over phosphorus pentoxide under an inert argon atmosphere, then stored over molecular sieves 3A.

Measurements: NMR spectra were recorded on Bruker 250 MHz , AMX 400400 MHz or DRX500 500MHz NMR spectrometers at $22{ }^{\circ} \mathrm{C}$ in chloroform- d_{1} or acetone- d_{6} solutions with TMS as the internal standard. IR absorption spectra were recorded on the Nicolet Model 205 FT-IR Spectrometer. Liquid samples were analysed neat, using NaCl-plate method and solid samples were analysed using the Diamond ATR attachment for solid samples. Melting points were obtained using Gallenkamp Melting Point Apparatus. MALDI-TOF spectra were recorded on a Bruker Reflex III in reflection positive ion mode with a DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2propenylidene]malononitrile) matrix. GPC curves were recorded on equipment consisting of a Hewlett Packard Model 1090 HPLC, a Hewlett Packard Model 1037 Differential Refractive Detector, two Polymer Labs PLgel 5μ Mixed C ($300 \mathrm{~mm} \times 7.5 \mathrm{~mm}$) columns and a guard (50 mm x 7.5 mm). The oven was adjusted to $40^{\circ} \mathrm{C}$ and CHCl_{3} (HPLC grade) was used as the eluent at a rate of $1 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$. Polymer samples were made up as solutions in chloroform ($2.5 \mathrm{mg} \mathrm{cm}{ }^{-3}$) spiked with toluene as a reference. The GPC curves were obtained by the RI-detection method, which was calibrated with a series of polystyrene narrow standards (Polymer Laboratories). Elemental analyses were carried out by the Perkin Elmer 2400 CHN Elemental Analyzer for CHN analysis and by the

Schöniger oxygen flask combustion method for anion analysis. UV-visible absorption spectra were measured by Hitachi U-2010 Double Beam UV / Visible Spectrophotometer. The absorbance of polymers was measured in solution in spectrophotometric grade solvents (dichloromethane, tetrahydrofuran and toluene) at ambient temperature using rectangular quartz cuvettes (light path length $=10 \mathrm{~mm}$). Thermogravimetric analysis curves (TGA) were obtained by Perkin Elmer TGA-7 Thermogravimetric Analyser at a scan rate of $10^{\circ} \mathrm{C} /$ minute under inert nitrogen atmosphere. Platinum pans were used as sample holder. The weights of the samples were approx. 5 mg . DSC curves were recorded on Perkin Elmer Pyris 1 Differential Scanning Calorimeter equipped with Perkin Elmer CCA7 Subambient Accessory at the scan rate of $10^{\circ} \mathrm{C} /$ minute under inert nitrogen atmosphere. Aluminium pans were used as sample pans. An empty aluminium pan was used as the reference. Cyclic voltammograms were recorded using a Princeton Applied Research Model 263A Potentiostat/Galvanostat. Measurements were carried out under argon at $25 \pm 2{ }^{\circ} \mathrm{C} .10 \mathrm{~cm}^{3}$ of tetrabutylammonium hexafluorophosphate solution in acetonitrile $\left(0.1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ was used as the electrolyte solution. A three electrode system was used consisting of an $\mathrm{Ag} / \mathrm{Ag}^{+}$reference electrode (silver wire in $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$ silver nitrate solution in the electrolyte solution), a platinum working electrode (2 mm -diameter smooth platinum disc, area $=3.14 \times 10^{-2} \mathrm{~cm}^{2}$), and a platinum counter electrode (platinum wire). Polymer thin films were formed by drop casting $1.0 \mathrm{~mm}^{3}$ of polymer solutions in chloroform (HPLC grade) $\left(1 \mathrm{mg} \mathrm{cm}^{-3}\right)$ onto the working electrode, then dried in air. Ferrocene was employed as a reference redox system according to IUPAC's recommendation. [3] All reactions were carried out under inert nitrogen atmosphere.

2. Monomer synthesis

N, N '-Bis(3-pentyl)-perylene-3,4:9,10-bis(dicarboximide) 1

Compound 1 was obtained by a modified literature procedure [4]. A dispersion of perylene-3,4,9,10-tetracarboxylic dianhydride ($6.00 \mathrm{~g}, 15.3 \mathrm{mmol}$), zinc acetate ($6.00 \mathrm{~g}, 32.7 \mathrm{mmol}$) in pyridine $\left(40 \mathrm{~cm}^{3}\right)$ was degassed three times, followed by the addition of 1-ethylpropylamine (4.00 $\mathrm{cm}^{3}, 34.3 \mathrm{mmol}$). The mixture was heated to $80^{\circ} \mathrm{C}$ for 4 h and then refluxed overnight. Most of the pyridine was removed by vacuum-distillation and the slurry obtained was dissolved in CHCl_{3} and washed with water and the organic fraction was concentrated in vacuo. The crude product was purified by column chromatography ($95 / 5 \mathrm{~V} / \mathrm{V}, \mathrm{CHCl}_{3} /$ methanol) and then recrystallised from ethanol/ CHCl_{3} to yield (1) as dark red crystals $\left(4.344 \mathrm{~g}, 53.5 \%\right.$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{H}} / \mathrm{ppm}$: $8.633(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}) ; 8.536(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}=8.0 \mathrm{~Hz}) ; 5.087(\mathrm{~m}, 2 \mathrm{H}) ; 2.283(\mathrm{~m}, 4 \mathrm{H}) ; 1.975(\mathrm{~m}, 4 \mathrm{H})$; $0.961(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} / \mathrm{ppm}: 163.95,134.24,131.29,129.44,126.1$, $123.45,122.83,57.74,25.02,11.41$. FT-IR (ATR): $\left(\vec{v} / \mathrm{cm}^{-1}\right): 2964.1,2932.3,2874.0,1696.7$, $1646.1,1591.0,1575.9,1506.0,1482.8,1456.3,1432.6,1404.1,1330.2,1299.7,1246.6,1207.0$,

N, N '-Bis(12-tricosanyl)-perylene-3,4:9,10-bis(dicarboximide) 2

Compound $\mathbf{2}$ was prepared according to a modified literature procedure [5]. A mixture of perylene-3,4,9,10-tetracarboxylic dianhydride ($1.33 \mathrm{~g}, 3.4 \mathrm{mmol}$), 1-undecyl dodecylamine [6] ($2.9 \mathrm{~g}, 8.5$ $\mathrm{mmol})$ and imidazole (10 g) was heated to $140^{\circ} \mathrm{C}$. After 4 h , the solution was cooled down to room temperature and the red solid was dispersed in ethanol $\left(100 \mathrm{~cm}^{3}\right)$. This mixture was poured into 2 M $\mathrm{HCl}\left(300 \mathrm{~cm}^{3}\right)$ and stirred overnight. The red precipitate was filtered and washed with $\mathrm{H}_{2} \mathrm{O}$ until the washing was neutral and dried under vacuum for 6 h at $100{ }^{\circ} \mathrm{C}$. The crude product was further purified by column chromatography on silica gel $\left(100 \% \mathrm{CHCl}_{3}\right)$ followed by flash vacuum chromatography on silica gel with a gradual change in the eluent polarity from 98/2 V/V petroleum ether/ethyl acetate to $60 / 40$ petroleum ether/ethyl acetate. Finally the product was recrystallised from ethanol to obtain pure $\mathrm{N}, \mathrm{N}^{\prime}$-bis(12-tricosanyl)-perylene-3,4:9,10-bis(dicarboximide) 2 (1.569 $\mathrm{g}, 44.6 \%$ yield). The product gave a single spot on TLC (100% chloroform) $\left(\mathrm{R}_{\mathrm{f}}=0.875\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$: $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} / \mathrm{ppm}: 8.644(\mathrm{~m}, 8 \mathrm{H}) ; 5.202(\mathrm{~m}, 2 \mathrm{H}) ; 2.257(\mathrm{~m}, 4 \mathrm{H}) ; 1.882(\mathrm{~m}, 4 \mathrm{H}) ; 1.207(\mathrm{~m}, 72 \mathrm{H}) ;$ $0.850(\mathrm{t}, 12 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} / \mathrm{ppm}: 164.62,163.54,134.46,131.86,131.09$, $129.57,126.41,123.93,123.19,122.97,54.75,32.35,31.88,31.74,30.53,29.59,29.56,29.52$, 29.30, 28.64, 26.95, 22.64, 14.07. FT-IR (ATR): $\left(\widetilde{\mathrm{v}} / \mathrm{cm}^{-1}\right): 2918.3,2849.2,1692.0,1648.5,1592.4$, 1577.0, 1466.1, 1404.8, 1336.9, 1251.8, 1175.3, 812.2, 749.7, 721.6. Anal. Calcd. for $\mathrm{C}_{70} \mathrm{H}_{102} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 81.19%; H, 9.93%; N, 2.71%. Found: C, 81.37%; H, 10.03%; N, 2.58%. MALDI-TOF MS m / z (matrix: DTCB) found $1036\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

N-(12-tricosanyl)-perylene-3,4-dicarboxyanhydride-9,10-dicarboximide 3

Compound 3 was obtained according to a modified literature procedure [7]. A mixture of N, N '-bis(12-tricosanyl)-perylene-3,4:9,10-bis(dicarboximide) $2(5.97 \mathrm{~g}, 5.765 \mathrm{mmol})$ in t - $\mathrm{BuOH}\left(58 \mathrm{~cm}^{3}\right)$ was heated to $89^{\circ} \mathrm{C}$ before freshly ground $\mathrm{KOH}(1.368 \mathrm{~g}, 24.38 \mathrm{mmol})$ was added. The solution was stirred for 1.5 h before it was cooled down to room temperature to add $10 \% \mathrm{HCl}\left(15 \mathrm{~cm}^{3}\right)$ slowly under stirring. After $40 \mathrm{~min}, 10 \% \mathrm{HCl}\left(135 \mathrm{~cm}^{3}\right)$ was added again and the mixture extracted with CHCl_{3}. The organic fractions were washed with water until the washing was neutral and then concentrated. The crude product was purified by flash vacuum chromatography on silica gel $(99 \%$ $\mathrm{CHCl}_{3} / 1 \%$ acetic acid) followed by column chromatography on silica gel $\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to obtain the pure product $(1.07 \mathrm{~g}, 26 \%$ yield $)$. The product gave a single spot on TLC $\left(100 \% \mathrm{CHCl}_{3}\right)\left(\mathrm{R}_{\mathrm{f}}=\right.$ 0.20). ${ }^{1} \mathrm{H}$-NMR: $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} / \mathrm{ppm}: 8.692(\mathrm{~m}, 8 \mathrm{H}) ; 5.197(\mathrm{~m}, 1 \mathrm{H}) ; 2.249(\mathrm{~m}, 2 \mathrm{H}) ; 1.887(\mathrm{~m}, 2 \mathrm{H})$;
$1.208(\mathrm{~m}, 36 \mathrm{H}) ; 0.852(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) .\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} / \mathrm{ppm}:{ }^{13} \mathrm{C}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} / \mathrm{ppm}: 164.32$, $163.20,159.81,136.23,133.42,131.88,131.68,131.12,129.39,126.60,126.37,124.71,123.97$, 123.84, 123.02, 118.85, 54.90, 32.29, 31.86, 29.57, 29.55, 29.51, 29.23, 26.93, 22.63, 14.07. FT-IR (ATR): ($\left(\overrightarrow{\bar{v}} / \mathrm{cm}^{-1}\right): 2920.3,2850.9,1769.2,1733.4,1698.7,1657.7,1592.2,1576.8,1466.1,1456.3$, $1404.5,1354.2,1313.9,1260.0,1246.0,1199.3,1178.0,1152.4,1139.8,1123.4,1012.9,862.4$, 846.0, 808.2, 794.5, 776.2, 752.4, 735.2. Anal. Calcd. for $\mathrm{C}_{47} \mathrm{H}_{55} \mathrm{NO}_{5}$: C, 79.07%; H, 7.76\%; N , 1.96%. Found: C, 78.70%; H, 7.84%; N, 1.82\%. Mass (EI); (m/z): 713 (100 \%), 714 (52\%), 715 (14\%) ($\mathrm{M}^{\bullet+}$).

N-(12-tricosanyl)-N'-(6-hydroxyhexyl)perylene-3,4:9,10-bis(dicarboximide) 4

Compound 4 was prepared according to a modified literature procedure [8]. A solution of 6aminohexanol ($0.049 \mathrm{~g}, 0.418 \mathrm{mmol}$) and zinc acetate ($0.001 \mathrm{~g}, 0.006 \mathrm{mmol}$) in $\mathrm{N}, \mathrm{N}-$ dimethylacetamide $\left(4 \mathrm{~cm}^{3}\right)$ was heated to $110^{\circ} \mathrm{C}$ before N -(12-tricosanyl)-perylene-3,4-dicarboxyanhydride-9,10-dicarboximide $3(0.199 \mathrm{~g}, 0.278 \mathrm{mmol})$ was added. This solution was stirred for 3 h at $110^{\circ} \mathrm{C}$ before the temperature was increased to $160^{\circ} \mathrm{C}$ for 15 h . The excess solvent was distilled off under vacuum and the slurry obtained was dissolved in CHCl_{3} and washed with $\mathrm{H}_{2} \mathrm{O}\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The collected organic layers were concentrated under vacuum and the crude product was purified by column chromatography on silica gel ($99 / 1 \mathrm{~V} / \mathrm{V}, \mathrm{CHCl}_{3}$ /acetic acid) to give 4 as a red solid ($123.7 \mathrm{mg}, 54.6 \%$ yield). The product gave a single spot on TLC ($99 / 1 \mathrm{~V} / \mathrm{V}$, $\mathrm{CHCl}_{3} /$ acetic acid) $\left(\mathrm{R}_{\mathrm{f}}=0.35\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} / \mathrm{ppm}: 8.571(\mathrm{~m}, 8 \mathrm{H}) ; 5.202(\mathrm{~m}, 1 \mathrm{H}) ; 4.204$ $(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.46 \mathrm{~Hz}) ; 3.689(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.36 \mathrm{~Hz}) ; 2.277(\mathrm{~m}, 2 \mathrm{H}) ; 1.906(\mathrm{~m}, 2 \mathrm{H}) ; 1.800(\mathrm{~m}, 2 \mathrm{H}) ; 1.646$ $(\mathrm{m}, 2 \mathrm{H}) ; 1.507(\mathrm{~m}, 4 \mathrm{H}) ; 1.214(\mathrm{~m}, 36 \mathrm{H}) ; 0.852(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.85 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} / \mathrm{ppm}:$ 163.37, 162.30, 162.03, 133.18, 132.84, 130.55, 129.96, 129.79, 128.29, 127.95, 124.945, 124.91, $123.00,122.25,121.86,121.78,121.66,61.74,53.87,39.40,31.58,31.36,30.88,28.61,28.58$, 28.31, 26.94, 26.03, 25.70, 24.28, 21.64, 13.07. FT-IR (ATR): $\left(\vec{v} / \mathrm{cm}^{-1}\right): 3519.4,2920.2,2851.2$, $1692.5,1644.1,1593.7,1576.7,1464.7$, 1439.3, 1403.6, 1340.2, 1253.3, 1177.7, 1074.8, 1053.7, 859.9, 809.5, 794.7, 745.6, 721.0. Anal. Calcd. for $\mathrm{C}_{53} \mathrm{H}_{68} \mathrm{~N}_{2} \mathrm{O}_{5}$: C, 78.29%; $\mathrm{H}, 8.43 \%$; $\mathrm{N}, 3.45 \%$. Found: C, 77.74%; H, 8.48%; N, 3.24\%. MALDI-TOF MS m / z (matrix: DTCB) found 813 (M + H^{+}).

N-(12-tricosanyl)-N'-(6-tosyloxyhexyl)perylene-3,4:9,10-bis(dicarboximide) 5

A solution of p-toluenesulfonyl chloride $(0.4685 \mathrm{~g}, 2.457 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was cooled down to $0-5^{\circ} \mathrm{C}$ and added to a solution of trimethylamine hydrochloride ($0.0605 \mathrm{~g}, 0.633 \mathrm{mmol}$), N -(12-tricosanyl)-N'-(6-hydroxyhexyl)perylene-3,4:9,10-bis(dicarboximide) 4 ($0.4617 \mathrm{~g}, 0.5678$ $\mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ at $0-5^{\circ} \mathrm{C}$. This mixture was stirred for 1.5 h at $0-5^{\circ} \mathrm{C}$
before water was added. The water layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the collected organic phases were washed with water then concentrated. The crude product was dissolved in a minimum amount of $\mathrm{Et}_{2} \mathrm{O}$ followed by the addition of methanol until a red solid precipitated out. The mixture was cooled overnight and the pure product collected by centrifugation ($0.370 \mathrm{~g} ; 67.2 \%$ yield). The product gave a single spot on TLC ($60 / 40 \mathrm{~V} / \mathrm{V}$ petroleum ether/ethyl acetate) $\left(\mathrm{R}_{\mathrm{f}}=0.72\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}$: $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} / \mathrm{ppm}: 8.635(\mathrm{~m}, 8 \mathrm{H}) ; 7.814(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.31 \mathrm{~Hz}) ; 7.373(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.07 \mathrm{~Hz}) ; 5.204(\mathrm{~m}$, $1 \mathrm{H}) ; 4.172(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.38 \mathrm{~Hz}) ; 4.053(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.48 \mathrm{~Hz}) ; 2.472(\mathrm{~s}, 3 \mathrm{H}) ; 2.266(\mathrm{~m}, 2 \mathrm{H}) ; 1.895(\mathrm{~m}$, $2 \mathrm{H}) ; 1.718(\mathrm{~m}, 4 \mathrm{H}) ; 1.421(\mathrm{~m}, 4 \mathrm{H}) ; 1.212(\mathrm{~m}, 36 \mathrm{H}) ; 0.854(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.85 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}\right)$: $\delta_{\mathrm{C}} / \mathrm{ppm}: 164.51,163.41,163.18,144.62,134.49,134.10,133.21,131.71,131.21,130.93,129.81$, 129.42, 129.18, 128.87, 126.24, 126.14, 124.02, 123.26, 123.00, 122.96, 122.83, 70.48, 54.81, $40.30,32.35,31.87,29.60,29.58,29.54,29.30,28.72,27.81,26.97,26.43,25.10,22.63,21.62$, 14.07. FT-IR (ATR): $\left(\widetilde{\mathrm{V}} / \mathrm{cm}^{-1}\right): 2921.1,2851.6,1692.9,1652.1,1593.9,1578.0,1463.7,1437.4$, 1403.9, 1338.6, 1251.3, 1187.9, 1172.6, 1095.7, 953.4, 922.0, 850.1, 809.2, 795.1, 745.2, 722.2. Anal. Calcd. for $\mathrm{C}_{60} \mathrm{H}_{74} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}$: C, 74.50%; H, 7.71%; N, 2.90%; S, 3.31%. Found: H, 73.98%; H, 7.68%; N, 2.80%; S, 3.28%. MALDI-TOF MS m / z (matrix: DTCB) found $968\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

N-(12-tricosanyl)- N '-(6-(2,7-dibromo-3,6-dimethyl-carbazol-9-yl)-hexyl)perylene-3,4:9,10-

 bis(dicarboximide) 6A solution of N -(12-tricosanyl)-N'-(6-tosyloxyhexyl)perylene-3,4:9,10-bis(dicarboximide) 5 (0.270 $\mathrm{g}, 0.279 \mathrm{mmol})$ in DMSO $\left(6 \mathrm{~cm}^{3}\right)$ and THF $\left(5 \mathrm{~cm}^{3}\right)$ was added dropwise to a mixture of 2,7-dibromo-3,6-dimethyl-9H-carbazole ($0.152 \mathrm{~g}, 0.466 \mathrm{mmol}$) and freshly ground $\mathrm{KOH}(0.06 \mathrm{~g}, 1.07$ mmol) in DMSO ($3 \mathrm{~cm}^{3}$). The obtained solution was stirred for 16 h before THF was removed under high vacuum. $\mathrm{Et}_{2} \mathrm{O}\left(200 \mathrm{~cm}^{3}\right)$ was then added followed by $\mathrm{H}_{2} \mathrm{O}\left(500 \mathrm{~cm}^{3}\right)$ and the water layer separated then extracted with $\mathrm{Et}_{2} \mathrm{O}\left(2 \times 200 \mathrm{~cm}^{3}\right)$. To improve the phase separation NaCl was added to the water. The collected organic layers were concentrated and the crude product was purified by column chromatography on silica gel $\left(99 / 1 \mathrm{~V} / \mathrm{V}, \mathrm{CHCl}_{3} /\right.$ acetic acid) followed by a recrystallisation from ethanol/ CHCl_{3} to give 6 as a dark purple solid ($0.155 \mathrm{mg}, 48 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}$: ($\mathrm{CDCl}_{3}, 9$ $\mathrm{mg} / \mathrm{ml}): \delta_{\mathrm{H}} / \mathrm{ppm}: 8.602(\mathrm{~m}, 8 \mathrm{H}) ; 7.788(\mathrm{~s}, 2 \mathrm{H}) ; 7.516(\mathrm{~s}, 2 \mathrm{H}) ; 5.204(\mathrm{~m}, 1 \mathrm{H}) ; 4.199$ (t, 2H, J = 7.38 Hz); 4.131 (t, 2H, J = 7.38 Hz); 2.583 ($\mathrm{s}, 6 \mathrm{H}$); 2.261 (m, 2H); 1.98 - 1.69 (m, 6H); 1,480 (m, 4H); $1.2084(\mathrm{~m}, 36 \mathrm{H}) ; 0.852(\mathrm{t}, 6 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}) .{ }^{13} \mathrm{C}-\mathrm{NMR}:\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} / \mathrm{ppm}: 163.57,162.48,162.32$, $138.84,133.61,133.30,130.78,130.35,130.03,128.49$, 128.28, 126.82, 125.37, 125.29, 122.99, $122.24,122.08,122.02,121.87,121.41,120.60,120.36,111.30,53.78,52.39,42.30,39.30,31.35$, 30.87, 28.58, 28.56, 28.52, 28.30, 27.65, 26.84, 25.96, 25.86, 25.74, 21.95, 21.64, 13.07. FT-IR (ATR): $\left(\tilde{v} / \mathrm{cm}^{-1}\right): 2920.6,2850.6,1694.1,1653.9,1593.6,1578.2,1453.3,1436.8,1404.0,1337.6$, $1300.3,1248.2,1174.4,1165.5,1080.9,1040.0,995.9,955.3,924.8,864.8,850.3,835.4,809.8$,

3. Polymer synthesis

Polymer P1

A solution of $6(0.228 \mathrm{~g}, 0.1987 \mathrm{mmol}), 5,5^{\prime}$-bis(tri- n-butylstannyl)-2,2'-bithiophene $(0.148 \mathrm{~g}$, 0.1987 mmol), tris(dibenzylideneacetone)dipalladium(0) ($0.0036 \mathrm{~g}, 0.0040 \mathrm{mmol}$) and tri-otolylphosphine $(0.0048 \mathrm{~g}, 0.0159 \mathrm{mmol})$ in toluene $\left(6.3 \mathrm{~cm}^{3}\right)$ was heated to $95^{\circ} \mathrm{C}$. This solution was stirred for 22 h before it was cooled to room temperature, followed by the addition of 2-(tributylstannyl)-thiophene ($0.076 \mathrm{~g}, 0.2047 \mathrm{mmol}$). The solution was heated to $97^{\circ} \mathrm{C}$ again and stirred overnight. After addition of toluene $\left(10 \mathrm{~cm}^{3}\right)$ the hot solution $\left(100^{\circ} \mathrm{C}\right)$ was precipitated in methanol. The collected polymer was subjected to Soxhlet extraction with methanol (48 h), acetone (24 h), toluene (48 h) and $\mathrm{CHCl}_{3}(48 \mathrm{~h})$. The chloroform fraction was concentrated to c.a. $\sim 20 \mathrm{~cm}^{3}$ and added to methanol $\left(500 \mathrm{~cm}^{3}\right)$ to provide a first fraction of the polymer after filtration $(0.079 \mathrm{~g}$, 34% yield). The insoluble residue left in the thimble was put into CHCl_{3} and stirred to reflux for 6 h before the solution was filtered, concentrated to c.a. $\sim 40 \mathrm{~cm}^{3}$ and the polymer precipitated in methanol $\left(500 \mathrm{~cm}^{3}\right)$ to afford a second fraction of the polymer after filtration $(0.088 \mathrm{~g}, 37 \%$ yield $)$. GPC $\left(\mathrm{CHCl}_{3}\right)$ - first fraction of polymer: $\mathrm{M}_{\mathrm{n}}=13,100 ; \mathrm{M}_{\mathrm{w}}=28,800 ; \mathrm{PD}=2.2$. $\operatorname{GPC}\left(\mathrm{CHCl}_{3}\right)-$ second fraction of polymer: $\mathrm{M}_{\mathrm{n}}=26,300 ; \mathrm{M}_{\mathrm{w}}=46,900 ; \mathrm{PD}=1.8 .{ }^{1} \mathrm{H}-\mathrm{NMR}:\left(\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}\right.$ at $\left.100{ }^{\circ} \mathrm{C}\right)$: $\delta_{\mathrm{H}} / \mathrm{ppm}: 8.54-8.08(\mathrm{~m}, 4 \mathrm{H}) ; 7.790$ (br.s, 2H); 7.399 (br.s, 2H); 7.192 (br.s, 2H); 7.039 (br.s, 2H); 5.088 (br.s, 1 H); 4.204 (bs, 2H); 4.100 (br.s, 2H); 2.556 (br.s, 6H), 2.173 (br.s, 2H); 1.884 (br.s, 4 H); 1.748 (br.s, 2H); 1.517 (br.s, 4H); $1.35-1.11$ (m, 36 H); 0.790 (br.s, 6H). For second fraction of polymer: Anal. Calcd. for $\mathrm{C}_{75} \mathrm{H}_{81} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$: C, 78.15%; H, 7.08\%; N, 3.65\%; S, 5.56\%; Br, 0%. Found: C, 76.03%; H, 6.69\%; N, 3.31\%; S, 6.27\%; Br, 2.02\%.

Poly[N-(2-hexyldecyl)-3,6-dimethyl-2,7-carbazole-alt-2,2'-(5,5'-bithienylene)] P2

Toluene ($10 \mathrm{~cm}^{3}$) was added to a mixture of 2,7-dibromo-3,6-dimethyl-9-(2-hexyldecyl)-9Hcarbazole ($0.5774 \mathrm{~g}, 1.0 \mathrm{mmol}$), $5,5^{\prime}$ '-bis(tri- n-butylstannyl)-2, ${ }^{\prime}$ '-bithiophene ($0.7443 \mathrm{~g}, 1.0 \mathrm{mmol}$), tris(dibenzylideneacetone)dipalladium(0) $(0.0183 \mathrm{~g}, 0.02 \mathrm{mmol})$ and tri(o-tolyl)phosphine (0.0244 $\mathrm{g}, 0.08 \mathrm{mmol})$. The solution was heated to $95^{\circ} \mathrm{C}$ for 92 h before it was cooled down to room temperature to add 2-(tributylstannyl)-thiophene ($0.370 \mathrm{~g}, 0.99 \mathrm{mmol}$). The mixture was then refluxed for 2.5 h before bromobenzene $(0.313 \mathrm{~g}, 1.99 \mathrm{mmol})$ was added. The mixture was heated to reflux for 2 hours, before toluene $\left(10 \mathrm{~cm}^{3}\right)$ and $\mathrm{CHCl}_{3}\left(16 \mathrm{~cm}^{3}\right)$ were added and the mixture kept at $60^{\circ} \mathrm{C}$ to solubilise the polymer. The hot solution was precipitated in methanol $\left(500 \mathrm{~cm}^{3}\right)$ and the
precipitate was filtered and subjected to Soxhlet extraction with methanol (24 h), acetone (24 h), hexane (18 h). It was then extracted with CHCl_{3} and the chloroform solution concentrated to $30 \mathrm{~cm}^{3}$ and the polymer precipitated in methanol. The yellow solid was collected by filtration and dried under vacuum. $(0.322 \mathrm{~g}, 55.4 \%$ yield $) . \mathrm{GPC} \mathrm{Mn}=27,100 ; \mathrm{Mw}=59,800, \mathrm{PD}=2.2 .{ }^{1} \mathrm{H}-\mathrm{NMR}$: $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{H}} / \mathrm{ppm}: 7.996(\mathrm{~s}, 2 \mathrm{H}) ; 7.481(\mathrm{~s}, 2 \mathrm{H}) ; 7.295(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=3.18 \mathrm{~Hz}) ; 7.126(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=2.94$ Hz); 4.169 (bs, 2H); $2.692(\mathrm{~s}, 6 \mathrm{H}) ; 2.201(\mathrm{~s}, 1 \mathrm{H}) ; 1.54-1.11(\mathrm{~m}, 24 \mathrm{H}) ; 0.869(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$: $\left(\mathrm{CDCl}_{3}\right): \delta_{\mathrm{C}} / \mathrm{ppm}: 143.39,140.24,137.11,131.68,127.30,126.51,123.67,122.18,122.04,110.55$, $47.67,37.83,31.92,31.79,30.06,29.75,29.65,29.39,26.48,22.72,21.58,14.17$. Anal. Calcd. for $\mathrm{C}_{38} \mathrm{H}_{47} \mathrm{NS}_{2}$: C, 78.43 ; H, 8.14; N, 2.41; S, 11.02; Br, 0. Found: C, 77.15; H, 8.04; N, 2.23; S, 11.66.

4. P1 Steady-state polaron yield

We can relate the PA signal to the density of photoexcited states using $-\Delta T / T \approx n d \sigma$ as described by Lanzani et al. [9]. Here, n is the density of excited states, σ is their absorption crosssection and d is the thickness of sample. It is more appropriate to use the penetration depth of the pump laser, or $1 / \alpha_{L}$, as this is the effective thickness in which most of the laser is absorbed. We can quantify the polaron density measured in Figure 7(a) using the fact that the absorption cross-section of singlets and polarons are believed to be comparable [10]. For a randomly orientated bulk polymer, $\sigma=\alpha_{\max } / N$ where $\alpha_{\max }$ is the maximum absorption coefficient, N is the density of ground states or monomeric segments given by $N=\rho N_{A} / m_{W}$ where ρ is the density, N_{A} is Avagadro's number and m_{W} is the molecular weight of the repeat unit. We can thus estimate the polaron absorption coefficient (σ_{p}) using

$$
\begin{equation*}
\sigma_{p} \approx m \frac{m_{W} \alpha_{\max }}{\rho N_{A}} \tag{1}
\end{equation*}
$$

Using values of $m_{W} \sim 1200 \mathrm{~g} / \mathrm{mol}, \rho \sim 1 \mathrm{~g} / \mathrm{cm}^{3}$ and $\alpha_{\max } \sim 7.5 \times 10^{4} \mathrm{~cm}^{-1}$ in $\mathbf{P 1}$, we find $\sigma_{p}=1.5 \times 10^{-}$ ${ }^{16} \mathrm{~cm}^{2}$; a value that is consistent with other work on the polymer m-LPPP [11]. The P1 polaron density can now be calculated using

$$
\begin{equation*}
n_{p}=\Delta T / T\left(1 / d \sigma_{p}\right) \tag{2}
\end{equation*}
$$

with the modulus of symbol $\Delta T / T$ at 1.72 eV being 2.2×10^{-4}. Using a value of α_{L} as $48,780 \mathrm{~cm}^{-1}$, we estimate that the penetration depth of the laser is $\sim 200 \mathrm{~nm}$. Combining the polaron cross-section, differential transmission and penetration depth, we deduce a polaron density in $\mathbf{P 1}$ thin-films under our measurement conditions to be $7.3 \times 10^{16} \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$.

To better understand the recombination mechanism of the excited species in the material systems studied, both the dependence of the PA signal on pump intensity and the applied modulation frequency have been studied as shown in Fig. S3. We find that P1 is characterized by dispersive dynamics [12] resulting from a distribution of excited state lifetimes. Typically, rather than the $N_{I} \sim \omega^{-2}$ form expected for the in-phase PA signal in the case of a uniform recombination rate, these systems display a gentle, high-frequency roll-off of the form $N_{I} \sim \omega^{-\alpha}$ where $0<\alpha<1$, with lower values of α implying a more disperse distribution of lifetimes. For P1 we determine a polaron lifetime $\tau=0.56 \mathrm{~ms}$ with $\alpha=0.65$. Having fit to the modulation data (see Fig. S3), we can calculate the polaron density that we might expect under steady-state conditions. In particular we estimate by extrapolation from the PA measurements (performed at a chopping frequency of 135 Hz), that the polaron density expected at quasi steady-state values will increase by 2.7 times, suggesting a value of $n_{p}{ }^{0}=2.0 \times 10^{17} \mathrm{~cm}^{-3}$.

We can relate the steady-state polaron density to a generation yield, η_{p}, by solving the rate equation

$$
\begin{equation*}
\frac{d n_{p}}{d t}=\frac{\eta_{p} \alpha_{L} N_{0}}{2}(1+\cos \omega t)-\frac{n_{p}}{\tau} \tag{3}
\end{equation*}
$$

Here, N_{o} is the number of photons incident on the film per unit area per second, ω is the chopping frequency, α_{L} is the film attenuation coefficient at the laser wavelength and τ is the polaron lifetime. Note, that this analysis ignores any saturation effects and assumes that the polarons undergo monomolecular recombination with a rate given by n_{p} / τ. We can calculate N_{0} using $N_{0}=$ $P /(h v A)$ where P is the laser power, $h v$ the pump excitation photon energy and A the crosssectional area of the laser-beam. The depth averaged excitation density is thus $N_{o} \alpha_{L}$, a value that is fixed at $1.2 \times 10^{17} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ in our PA experiments. In the steady state, equation (3) can be solved to express the polaron yield as

$$
\begin{equation*}
\eta_{p}=\frac{n_{p}}{\alpha_{L} N_{0} \tau} \tag{4}
\end{equation*}
$$

Using our measured parameters, we determine a singlet-exciton to polaron yield of $\eta_{p}=6 \%$.

Figure S1

Fig S1. Overlay of two ${ }^{1} \mathrm{H}$-NMR spectra from two different concentrations of compound (6); red: approx. $37 \mathrm{mg} / \mathrm{ml}$; blue: approx. $9 \mathrm{mg} / \mathrm{ml}$

Figure S2

Fig. S2. ${ }^{1} \mathrm{H}$-NMR spectra of P 1 in $\mathrm{C}_{2} \mathrm{D}_{2} \mathrm{Cl}_{4}$ at room temperature (blue) and at $100{ }^{\circ} \mathrm{C}$ (red)

Figure S3

Fig. S3. PA dynamics of the 1.72 eV polaronic feature of $\mathbf{P} 1$ under 488 nm illumination at 77 K . (a) Intensity dependence of the transmission difference on pump intensity at 135 Hz modulation fitted with a power law with exponent 0.9 (dotted line) and a trap modified MR model [13], (b) Modulation dependence of the transmission difference fitted with the dispersive model proposed by Epshtein et al. [14].
[1] A. Iraqi, D. F. Pickup and H. Yi, Chem. Mater., (2006), 18, 1007.
[2] B. Jousselme, P. Blanchard, E. Levillain, J. Delaunay, M. Allain, P. Richomme, D. Rondeau, N. Gallego-Planas, J. Roncali, J. Am. Chem. Soc., (2003), 125, 1363.
[3] G. Gritzner, Pure Appl. Chem., (1990), 62, 1839.
[4] V. Percec, E. Aqad, M. Peterca, M. R. Imam, M. Glodde, T. K. Bera, Y. Miura, V. S. K. Balagurusamy, P. C. Ewbank, F. Wuerthner, P. A. Heiney, Chem.-A Eur. J., (2007), 13, 3330.
[5] K. Balakrishnan, A. Datar, T. Naddo, J. Huang, R. Oitker, M. Yen, J. Zhao, L. Zang, J. Am. Chem. Soc. (2006), 128, 7391.
[6] C. Yanke, D. Aniket, B. Kaushik, Z. Ling, J. Am. Chem. Soc., (2007), 129, 7234.
[7] L. X. Chen, S. Xiao, L. Yu, J. Phys. Chem. B, (2006), 110, 11730.
[8] B. Jancy, S. K. Asha, J. Phys. Chem., (2006), 110, 20937.
[9] Wohlgennant, V., Ehrenfreund and Vardeny, Z. V., Spectroscopy of Long-Lied Photoexcitations in π-Conjugated Systems; Lanzani, G., Ed.; Wiley-VCH, Weinheim (2006), ch. 5
[10] E. Zojer, J. Cornil, G. Leising and J. Bredas, Phys. Rev. B., (1999), 59, 7957-7968
[11] E. List, C. Kim, A. Naik, U. Scherf, G Leising, W. Graupner and J. Shinar, Phys. Rev B., (2001), 64, 155204
[12] O. Epshtein, G. Nakhmanovich, Y. Eichen, and E. Ehrenfreund, Phys. Rev. B., (2001), 63, 125206
[13] Wohlgennant, V., Ehrenfreund and Vardeny, Z. V., Spectroscopy of Long-Lived Photoexcitations in π-Conjugated Systems; Lanzani, G., Ed.; Wiley-VCH, Weinheim 2006, (ch. 5)
[14] O. Epshtein, G. Nakhmanovich, Y. Eichen, and E. Ehrenfreund, Phys. Rev. B., (2001), 63, 125206

