Electronic Supporting Information for "Characterization of Phosphonic Acid Binding to Zinc Oxide"

Peter J. Hotchkiss, Michal Malicki, Anthony J. Giordano, Neal R. Armstrong and Seth R. Marder

Instrumentation Details

XPS Peak Fitting

Peak fitting was accomplished using eXPFit, a set of macros designed for use with Microsoft Excel. Parameters for peak fitting of the O(1s) peak of the various ZnO substrates are listed in the table below.

Sample	Solvent Cleaned ZnO		Oxygen plasma etched ZnO			ODPA modified ZnO			
Binding Energy (eV)	529.98	531.66	529.96	531.65	532.40	529	.80	531.00	531.50
Height (a.u.)	9530	4080	10820	3400	1400	34	20	1700	2.1
LFWHM (eV)	1.276	1.792	1.150	1.900	1.900	1.4	100	2.300	2.100
RFWHM (eV)	1.276	1.792	1.150	1.900	1.900	1.4	100	2.300	2.100
LGaussian	0.912	0.863	0.900	1.000	1.600	0.	900	0.950	0.800
RGaussian	0.912	0.863	0.900	1.000	1.600	0.	900	0.950	0.800
Area (a.u.)	13412	8217	13787	6876	2136	5	305	4247	2273

AFM

All AFM images were acquired under atmospheric conditions using a commercial MultiMode AFM (Veeco, CA) Dimension 3100 equipped with a NanoScope III controller. The microscope was housed within an acoustic isolation hood and stabilized on a floating nitrogen table (Micro-g, Technical Manufacturing Corporation, MA). The AFM piezo scanner was calibrated using a 3D reference silicon grating (Veeco, part number 498-000-026) with a 10 μ m lateral pitch and a step height of 200 nm. Cantilevers (NSC35/NoAl, Mikromasch, CA) were made from n-type silicon (phosphorus doped), utilizing cantilevers 110 and 130 \pm 5 μ m in length, which have a typical probe radius of 10 nm and typical spring constants of 7.5 and 4.5 N/m, respectively. Image processing was performed using NanoScope III version 5.30r1 from Digital Instruments.

Lateral force microscopy images (LFM) were obtained in contact mode with a deflection set point of 0.5 V for each sample using the same tip (NSC35/NoAl, 130 \pm 5 µm cantilever length) for measurements on all four sample types. These 10 µm images were collected at a speed of 20 µm/s with a 90° scan angle. The LFM retrace was subtracted from the LFM trace and the resulting image flattened using a first order polynomial background. Each sample was examined in three areas to ensure data consistency across the entire surface.

Additional Experimental Data

Figure SI-1. XPS spectra of ZnO (pink), oxygen plasma etched ZnO (black), OPA-modified ZnO (blue), ODPA-modified ZnO (red), and FHOPA-modified ZnO (green). The spectra have been offset for clarity.

Figure SI-2. XPS C(1s) peaks of ZnO (pink), oxygen plasma etched ZnO (black), OPA-modified ZnO (blue), ODPA-modified ZnO (red), and FHOPA-modified ZnO (green).

Figure SI-3. XPS P(2p) peaks (~ 134 eV) of OPA–modified ZnO (blue), ODPA–modified ZnO (red), and FHOPA–modified ZnO (green). The Zn(3s) peaks (~140 eV) were normalized.

Figure SI-4. Lateral Force Microscopy images of unmodified ZnO (a), and ZnO modified with OPA (b), ODPA (c), and FHOPA (d). Images are 10 μ m × 10 μ m.

Characterization data for diethyl dodecylphosphonate- d_{25} is presented below.

rnal is (c) The Royal Society of Chemistry

шdd

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

wdd

Diethyl dodecylphosphonate-d25