Supporting Information

Experimental section:

Solvents used were reagent grade purchased from Mallinckrodt Chemical Co. and were used without further purification. Imidazole was purchased from R. D. H. Alkyl halides were obtained from TCI. The ¹H NMR spectra were recorded on a Bruker AC-F300 and/ or BRUKER 600 UltraShieldTM equipped with a 5 mm BBO inverse probe in CDCl₃ with tetramethylsilane as an internal standard at 298 K. Elemental microanalyses were performed by the Taiwan Instrumentation Center. Optical characterization was performed by using covered microscope slides on an Olympus BH-2 polarizing microscope equipped with Mettler FP 82 Hot Stage and Mettler FP 90 Central Processor. Transition temperatures and heats of fusion were determined by differential scanning calorimetry using a Perkin-Elmer DSC-7 calorimeter, calibrated with indium and tin standards in conjunction with a Perkin-Elmer 7700 thermal analysis data station. X-Ray powder diffraction (XRD) studies were performed on an INEL MPD-diffractometer with a 2.0 kW Cu-Ka X-ray source equipped with an INEL CPS-120 position sensitive detector and a variable temperature capillary furnace with an accuracy of 0.10 °C in the vicinity of the capillary tube. The detector was calibrated using mica and silicon standards. The powder samples were charged in Lindemann capillary tubes (80 mm long and 1/100 mm thick) from Charles Supper Co. with an inner diameter of 0.10 or 0.15 mm.

Synthesis of the salts: The $[C_nVIm]Br$ and $[C_nVIm]I$ series salts can be readily prepared by refluxing a mixture of *N*-vinylimidazole and corresponding alkyl bromide or iodide in a solvent-less reaction condition. These vinylimidazolium salts are reasonably soluble in polar solvents like dichloromethane, chloroform, and acetone, but insoluble in non polar solvents like *n*-hexane and ether; the solubility of these salts decreases with increasing chain length. Saturated congeners, namely, $[C_{16}EIm]Br$ and $[C_{16}EIm]I$ were prepared similarly, starting from *N*-ethylimidazole. The $[C_{16}VIm]PF_6$ and $[C_{16}VIm]BF_4$ series salts were prepared from $[C_nVIm]Br$ through anion metathesis.

General procedure for synthesis of $[C_nVIm]Br \cdot H_2O$ salts: 1-vinlyl-3-alkylimidazolium bromide salts have been prepared from the *N*-alkylation of 1-vinylimidazole with the corresponding alkyl halides. Under dry nitrogen atmosphere and vigorous stirring, freshly distilled alkyl halide was added drop-wise over a period of 2 h to reaction mixture. After the addition is complete the reaction mixture was kept refluxing for about 3 hours till consumption of vinylimidazole is complete as indicated by TLC. The crude product was washed with diethyl ether to remove unreacted starting materials if any. Further, the crude product was recrystallized from DCM/ether to gives a product with a yield > 90%. All the salts were reasonably soluble in dichloromethane, chloroform and acetone, and insoluble in n-hexane and ether. The solubility decreased with increase in the alkyl chain length.

1-Vinyl-3-octadecylimidazolium bromide, $[C_{18}VIm]Br \cdot H_2O$: Light yellow solid, yield 98%. ¹H NMR (ppm, CDCl₃): δ 0.86 (t, J³ = 6.3 Hz, 3H, CH₃), 1.04-1.32 (m, 30H, CH₂), 1.84-2.00 (m, 2H, CH₂), 4.39 (t, J³ = 7.38, 2H, CH₂), 5.38–5.98 (m, 2H, CH₂), 7.44 (s, 1H, CH), 7.46-7.53 (q, H, CH), 7.74 (s, 1H, CH), 10.98 (s, 1H, CH). Anal. Calculated for C₂₃H₄₅N₂OBr: C, 62.01; H, 10.18; N, 6.29. Found: C, 62.13; H, 10.21; N, 6.19.

1-Vinyl-3-hexadecylimidazolium bromide, [$C_{16}VIm$]Br·H₂O: Light yellow solid, yield 97%. ¹H NMR (ppm, CDCl₃): δ 0.86 (t, J³ = 6.4 Hz, 3H, CH₃), 1.17-1.31 (m, 26H, CH₂), 1.88-2.00 (m, 2H, CH₂), 4.39 (t, J³ = 7.35, 2H, CH₂), 5.37-6.00 (m, 2H, CH₂), 7.36-7.53 (q, H, CH), 7.48 (s, 1H, CH), 7.83 (s, 1H, CH), 10.87 (s, 1H, CH). Anal. Calculated for C₂₁H₄₁N₂OBr: C, 60.42; H, 9.90; N, 6.71. Found: C, 60.51; H, 10.09; N, 6.51.

I-Vinyl-3-tetradecylimidazolium bromide, *[C*₁₄*VIm]Br·H*₂*O:* Light yellow solid, yield 98%. ¹H NMR (ppm, CDCl₃): δ 0.86 (t, J³ = 4.4 Hz, 3H, CH₃), 1.23-1.32 (m, 22H, CH₂), 1.94-2.00 (m, 2H, CH₂), 4.40 (t, J³ = 7.50, 2H, CH₂), 5.38-5.98 (m, 2H, CH₂), 7.46 (s, 1H, CH), 7.49-7.54 (q, H, CH), 7.76 (s, 1H, CH), 10.93 (s, 1H, CH). Anal. Calculated for C₁₉H₃₇N₂OBr: C, 58.71; H, 9.58; N, 7.19. Found: C, 58.46; H, 9.19; N, 6.91.

1-Vinyl-3-dodecylimidazolium bromide, $[C_{12}VIm]Br \cdot H_2O$: Light yellow solid, yield 99%. ¹H NMR (ppm, CDCl₃): $\delta 0.85$ (t, J³ = 6.3 Hz, 3H, CH₃), 1.22-1.32 (m, 18H, CH₂), 1.91-1.95 (m, 2H, CH₂), 4.38 (t, J³ = 7.35, 2H, CH₂), 5.36-6.01 (m, 2H, CH₂), 7.45-7.53 (q, H, CH), 7.54 (s, 1H, CH), 7.87 (s, 1H, CH), 10.87 (s, 1H, CH). Anal. Calculated for C₁₇H₃₃N₂OBr: C, 56.50; H, 9.20; N, 7.75. Found: C, 56.93; H, 9.27; N, 7.77.

1-Vinyl-3-decylimidazolium bromide, $[C_{10}VIm]Br \cdot H_2O$: Brown liquid, yield 92%. ¹H NMR(ppm, CDCl₃): $\delta 0.85$ (t, J³ = 6.5 Hz, 3H, CH₃), 1.23-1.32 (m, 14H, CH₂), 1.88-1.98 (m, 2H, CH₂), 4.38 (t, J³ = 7.29, 2H, CH₂), 5.36-5.99 (m, 2H, CH₂), 7.45-7.53 (q, H, CH), 7.50 (s, 1H, CH), 7.83 (s, 1H, CH), 10.86 (s, 1H, CH). Anal. Calculated for C₁₅H₂₉N₂OBr: C, 54.05; H, 8.77; N, 8.40. Found: C, 53.21; H, 9.01; N, 9.24.

1-Vinyl-3-octaylimidazolium bromide, [*C*₈*VIm*]*Br*·*H*₂*O*: Brown liquid, yield 93%. ¹H NMR(ppm, CDCl₃): δ 0.82 (t, J³ = 6.4 Hz, 3H, CH₃), 0.80-0.84 (m, 10H, CH₂), 1.21-1.29 (m, 2H, CH₂), 4.36 (t, J³ = 7.4, 2H, CH₂), 5.33-6.00 (m, 2H, CH₂), 7.41-7.49 (q, H, CH), 7.57 (s, 1H, CH), 7.91 (s, 1H, CH), 10.90 (s, 1H, CH). Anal. Calculated for C₁₃H₂₅N₂OBr: C, 51.15; H, 8.25; N, 9.18. Found: C, 51.66; H, 8.32; N, 9.46.

1-Vinyl-3-hexylimidazolium bromide, [C6VIm]Br·H2O: Brown liquid, yield

96%. ¹H NMR(ppm, CDCl₃): δ 0.79 (t, J³ = 6.4 Hz, 3H, CH₃), 1.21-1.31 (m, 6H, CH₂), 1.82-1.92 (m, 2H, CH₂), 4.32 (t, J³ = 7.5, 2H, CH₂), 5.29-5.98 (m, 2H, CH₂), 7.37-7.45 (q, H, CH), 7.60 (s, 1H, CH), 7.92 (s, 1H, CH), 10.73 (s, 1H, CH). Anal. Calculated for C₁₁H₂₁N₂OBr: C, 50.97; H, 7.39; N, 10.81. Found: C, 49.60; H, 7.92; N, 10.52.

1-Vinyl-3-butylimidazolium bromide, $[C_4VIm]Br \cdot H_2O$: Brown liquid, yield 95%. ¹H NMR(ppm, CDCl₃): δ 0.92 (t, J³ = 7.2 Hz, 3H, CH₃), 1.32-1.40 (m, 2H, CH₂), 1.86-1.93 (m, 2H, CH₂), 4.38 (t, J³ = 7.4, 2H, CH₂), 5.33-6.02 (m, 2H, CH₂), 7.41-7.49 (q, H, CH), 7.63 (s, 1H, CH), 7.92 (s, 1H, CH), 10.81 (s, 1H, CH). Anal. Calculated for C₉H₁₇N₂OBr: C, 12.12; H, 46.77; N, 6.54. Found: C, 11.54; H, 45.16; N, 7.90.

General procedure for synthesis of $[C_nVIm]I$: All salts in this series were prepared by using the same procedure used for preparation of bromide series salts. All product were recrystallized from CH₂Cl₂/ether to obtain a solid product with a yield >90%. All the salts are reasonably soluble in dichloromethane, chloroform and acetone, but do not dissolve in n-hexane and ether. The solubility decreased with increasing alkyl chain length.

I-Vinyl-3-octadecylimidazolium Iodide, [*C*₁₈*VIm*]*I*: Light yellow solid, yield 99%. ¹H NMR (ppm, CDCl₃): δ 0.85 (t, J³ = 6.3 Hz, 3H, CH₃), 1.22-1.32 (m, 30H, CH₂), 1.89-1.96 (m, 2H, CH₂), 4.40 (t, J³ = 7.38, 2H, CH₂), 5.39-6.02 (m, 2H, CH₂), 7.56 (s, 1H, CH), 7.37-7.46 (q, H, CH), 7.83 (s, 1H, CH), 10.51 (s, 1H, CH). Anal. Calculated for C₂₃H₄₃N₂I: C, 62.01; H, 10.18; N, 6.29. Found: C, 62.13; H, 10.21; N, 6.19.

I-Vinyl-3-hexadecylimidazolium Iodide, [$C_{16}VIm$]*I:* Light yellow solid, yield 97%. ¹H NMR (ppm, CDCl₃): δ 0.86 (t, J³ = 6.4 Hz, 3H, CH₃), 1.23-1.34 (m, 26H, CH₂), 1.90-1.97 (m, 2H, CH₂), 4.40 (t, J³ = 7.35, 2H, CH₂), 5.40-6.01 (m, 2H, CH₂), 7.38-7.46 (q, H, CH), 7.54 (s, 1H, CH), 7.79 (s, 1H, CH), 10.56 (s, 1H, CH). Anal. Calculated for C₂₁H₃₉N₂I: C, 60.42; H, 9.90; N, 6.71. Found: C, 60.17; H, 9.48; N, 6.40.

1-Vinyl-3-tetradecylimidazolium Iodide, [$C_{14}VIm$]*I*: Light yellow solid, yield 95%. ¹H NMR (ppm, CDCl₃): $\delta = 0.88$ (t, 3J = 6.4 Hz, 3H, CH3), 1.20-1.30 (m, 26H, CH₂), 1.92-1.97 (m, 2H, CH₂), 4.42 (t, J3 = 7.3 Hz, 2H, CH₂), 5.45-5.97 (m, 2H, CH₂), 7.38-7.58 (q, H, CH), 7.32 (s, 1H, CH), 7.90 (s , 1H, CH), 10.94 (s, 1H, CH). Anal. Calculated for C₁₉H₃₅N₂I: C, 54.54; H, 8.43; N, 6.70. Found: C, 54.93; H, 8.14; N, 6.24.

I-Vinyl-3-dodecylimidazolium Iodide, [$C_{12}VIm$]*I*: Light yellow solid, yield 98%. ¹H NMR (ppm, CDCl₃): δ 0.84 (t, J³ = 6.3 Hz, 3H, CH₃), 1.21-1.31 (m, 18H, CH₂), 1.88-1.96 (m, 2H, CH₂), 4.39 (t, J³ = 7.35, 2H, CH₂), 5.38-6.02 (m, 2H, CH₂), 7.37-7.45 (q, H, CH), 7.60 (s, 1H, CH), 7.87 (s, 1H, CH), 10.50 (s, 1H, CH). Anal. Calculated for C₁₇H₃₁N₂I: C, 52.31; H, 8.00; N, 7.18. Found: C, 52.64; H, 7.63; N, 7.23.

1-Vinyl-3-decylimidazolium Iodide, [$C_{10}VIm$]I: Brown liquid, yield 95%. ¹H NMR(ppm, CDCl₃): δ 0.87 (t, J³ = 6.5 Hz, 3H, CH₃), 1.19-1.29 (m, 14H, CH₂),

1.91-2.01 (m, 2H, CH₂), 4.41 (t, J³ = 7.29, 2H, CH₂), 5.25-6.06 (m, 2H, CH₂), 7.40-7.43 (q, H, CH), 7.47 (s, 1H, CH), 7.71 (s, 1H, CH), 10.53 (s, 1H, CH). Anal. Calculated for C₁₅H₂₇N₂I: C, 49.73; H, 7.51; N, 7.73. Found: C, 57.88; H, 8.83; N, 5.91.

1-Vinyl-3-octylimidazolium Iodide, [*C*₈*VIm*]*I*: Brown liquid, yield 94%. ¹H NMR(ppm, CDCl₃): δ 0.85 (t, J³ = 6.4 Hz, 3H, CH₃), 1.24-1.33 (m, 10H, CH₂), 1.88-1.98 (m, 2H, CH₂), 4.40 (t, J³ = 7.4, 2H, CH₂), 5.04-6.01 (m, 2H, CH₂), 7.40-7.47 (q, H, CH), 7.53 (s, 1H, CH), 7.78 (s, 1H, CH), 10.62 (s, 1H, CH). Anal. Calculated for C₁₃H₂₃N₂I: C, 46.72; H, 6.94; N, 8.38. Found: C, 44.35; H, 7.04; N, 7.99.

I-Vinyl-3-hexylimidazolium Iodide, [*C*₆*VIm*]*I*: Brown liquid, yield 97%. ¹H NMR(ppm, CDCl₃): δ 0.86 (t, J³ = 6.4 Hz, 3H, CH₃), 1.28-1.38 (m, 6H, CH₂), 1.90-2.00 (m, 2H, CH₂), 4.41 (t, J³ = 7.5, 2H, CH₂), 5.40-6.02 (m, 2H, CH₂), 7.38-7.46 (q, H, CH), 7.59 (s, 1H, CH), 7.88 (s, 1H, CH), 10.57 (s, 1H, CH). Anal. Calculated for C₁₁H₁₉N₂I: C, 43.15; H, 6.25; N, 9.15. Found: C, 42.72; H, 6.09; N, 8.80.

I-Vinyl-3-butylimidazolium Iodide, [*C*₄*VIm*]*I*·0.5H₂O: Brown liquid, yield 96%. ¹H NMR(ppm, CDCl₃):δ 0.95 (t, J³ = 7.2 Hz, 3H, CH₃), 1.40-1.45 (m, 2H, CH₂), 1.92-1.97 (m, 2H, CH₂), 4.43 (t, J³ = 7.4, 2H, CH₂), 5.40-6.01 (m, 2H, CH₂), 7.37-7.45 (q, H, CH), 7.60 (s, 1H, CH), 7.81 (s, 1H, CH), 10.54 (s, 1H, CH). Anal. Calculated for C₉H₁₅N₂I·0.5H₂O: C, 37.65; H, 5.62; N, 9.76. Found: C, 38.05; H, 5.95; N, 9.81.

General procedure for synthesis $[C_n VIm]BF_4$: $[C_n VIm]BF_4$ series salts were

prepared by anion metathesis of corresponding salt from bromide series, $[C_nVIm]Br \cdot H_2O$ salts, in MeOH-H₂O (20/80 v/v) solvent system using NH₄BF₄. The precipitates were isolated by filtration. The crude product obtained was washed with a lot of MeOH-H₂O (20/80 v/v). A light yellow product was obtained with about 70% yield.

1-Vinyl-3-octadecylimidazolium Tetrafluoroborate, [$C_{18}VIm$] BF_4 : Colorless solid, ¹H NMR (ppm, CDCl₃): $\delta = 0.87$ (t, $J^3 = 6.4$ Hz, 3H, CH3), 1.25-1.37 (m, 30H, CH₂), 1.89-1.91 (m, 2H, CH₂), 4.24 (t, $J^3 = 7.3$ Hz, 2H, CH₂), 5.37-5.84 (m, 2H, CH₂), 7.10-7.19 (q, H, CH), 7.40 (s, 1H, CH), 7.63 (s, 1H, CH), 9.12 (s, 1H, CH). Anal. Calculated for C₂₃H₄₃N₂BF₄: C, 63.59; H, 9.98; N, 6.45. Found: C, 63.20; H, 9.87; N, 6.03.

1-Vinyl-3-hexadecylimidazolium Tetrafluoroborate, [$C_{16}VIm$] BF_4 : Colorless solid, ¹H NMR (ppm, CDCl₃): $\delta = 0.87$ (t, J³ = 6.5 Hz, 3H, CH3), 1.25-1.57 (m, 26H, CH₂), 1.87-1.91 (m, 2H, CH₂), 4.24 (t, J³ = 7.3 Hz, 2H, CH₂), 5.38-5.83 (m, 2H, CH₂), 7.11-7.19 (q, H, CH), 7.38 (s, 1H, CH), 7.61 (s, 1H, CH), 9.14 (s, 1H, CH). Anal. Calculated for C₂₁H₃₉N₂BF₄: C, 62.07; H, 9.67; N, 6.89. Found: C, 61.98; H, 9.51; N, 6.51.

1-Vinyl-3-tetradecylimidazolium Tetrafluoroborate [C_{14} VIm] BF_4 : Colorless solid, ¹H NMR (ppm, CDCl₃): $\delta = 0.88$ (t, J³ = 6.4 Hz, 3H, CH3), 1.25-1.38 (m, 22H,

CH₂), 1.87-1.92 (m, 2H, CH₂), 4.25 (t, J³ = 7.5 Hz, 2H, CH₂), 5.38-5.85 (m, 2H, CH₂), 7.12-7.20 (q, H, CH), 7.40 (s, 1H, CH), 7.63 (s, 1H, CH), 9.15 (s, 1H, CH). Anal. Calculated for C₁₉H₃₅N₂BF₄: C, 60.32; H, 9.33; N, 7.40. Found: C, 60.07; H, 9.17; N, 7.09.

1-Vinyl-3-dodecylimidazolium Tetrafluoroborate [$C_{12}VIm$] BF_4 : Colorless solid, ¹H NMR (ppm, CDCl₃): $\delta = 0.87$ (t, $J^3 = 6.5$ Hz, 3H, CH₃), 1.23-1.44 (m, 18H, CH₂), 1.87-1.91 (m, 2H, CH₂), 4.25 (t, $J^3 = 7.4$ Hz, 2H, CH₂), 5.35-5.86 (m, 2H, CH₂), 7.13-7.24 (q, H, CH), 7.44 (s, 1H, CH), 7.69 (s, 1H, CH), 9.26 (s, 1H, CH). Anal. Calculated for C₁₇H₃₁N₂BF₄: C, 58.30; H, 8.92; N, 8.00. Found: C, 57.82; H, 8.84; N, 7.63.

General procedure for synthesis $[C_nVIm]PF_6$: $[C_nVIm]PF_6$ series salts were prepared by anion metathesis of corresponding salt from bromide series, $[C_nVIm]Br \cdot H_2O$ salts, in MeOH-H₂O (15/85 v/v) solvent system using NH₄PF₆. The precipitates were isolated by filtration. The crude product obtained was washed with a lot of MeOH-H₂O (15/85 v/v). A light yellow product was obtained with about 70% yield.

I-Vinyl-3-octadecylimidazolium Hexafluorophosphate, $[C_{18}VIm]PF_6$: Colorless solid, yield 86%. ¹H NMR (ppm, CDCl₃): δ 0.88 (t, J³ = 6.3 Hz, 3H, CH₃), 1.25-1.33 (m, 30H, CH₂), 1.87-1.92 (m, 2H, CH₂), 4.21 (t, J³ = 7.38, 2H, CH₂), 5.40–5.80 (m, 2H, CH₂), 7.03-7.11 (q, H, CH), 7.33 (s, 1H, CH), 7.54 (s, 1H, CH), 8.84 (s, 1H, CH). Anal. Calculated for C₂₃H₄₃N₂PF₆: C, 56.08; H, 8.80; N, 5.69. Found: C, 56.25; H, 8.39; N, 5.64.

1-Vinyl-3-hexadecylimidazolium Hexafluorophosphate, $[C_{16}VIm]PF_6$: Colorless solid, yield 84%. ¹H NMR (ppm, CDCl₃): δ 0.87 (t, J³ = 6.4 Hz, 3H, CH₃), 1.17-1.34 (m, 26H, CH₂), 1.88-2.00 (m, 2H, CH₂), 4.21 (t, J³ = 7.35, 2H, CH₂), 5.42–5.79 (m, 2H, CH₂), 7.03-7.11 (q, H, CH), 7.33 (s, 1H, CH), 7.53 (s, 1H, CH), 8.86 (s, 1H, CH). Anal. Calculated for C₂₁H₃₉N₂PF₆: C, 54.30; H, 8.46; N, 6.03. Found: C, 54.18; H, 8.54; N, 6.02.

1-Vinyl-3-tetradecylimidazolium Hexafluorophosphate, $[C_{14}VIm]PF_6$: Colorless solid, yield 84%. ¹H NMR (ppm, CDCl₃): δ 0.88 (t, J³ = 4.4 Hz, 3H, CH₃), 1.25-1.33 (m, 22H, CH₂), 1.87-1.92 (m, 2H, CH₂), 4.22 (t, J³ = 7.50, 2H, CH₂), 5.41–5.80 (m, 2H, CH₂), 7.03–7.11 (q, H, CH), 7.34 (s, 1H, CH), 7.53 (s, 1H, CH), 8.85 (s, 1H, CH). Anal. Calculated for C₁₉H₃₅N₂PF₆: C, 52.29; H, 8.08; N, 6.42. Found: C, 52.25; H, 8.22; N, 6.36.

I-Vinyl-3-dodecylimidazolium Hexafluorophosphate, $[C_{12}VIm]PF_6$: Colorless solid, yield 80%. ¹H NMR (ppm, CDCl₃): δ 0.90 (t, J³ = 6.3 Hz, 3H, CH₃), 1.23-1.35 (m, 18H, CH₂), 1.89-1.94 (m, 2H, CH₂), 4.24 (t, J³ = 7.35, 2H, CH₂), 5.42–5.82 (m, 2H, CH₂), 7.05–7.13 (q, H, CH), 7.38 (s, 1H, CH), 7.58 (s, 1H, CH), 8.84 (s, 1H, CH). Anal.

Calculated for C₁₇H₃₁N₂PF₆: C, 50.00; H, 7.65; N, 6.86. Found: C, 50.15; H, 6.95; N, 6.87.

Synthesis of 1-Hexadecyl-3-ethylimidazolium Bromide, $[C_{16}EIm]Br \cdot H_2O$:

Ethylimidazole (0.5 g, 5.2 mmol) and 1-bromohexadecane (1.6 g, 5.2 mmol) were

mixed in 50 mL round bottom flask and was refluxed at 90 °C for 3 h. After completion

of reaction, crude product was recrystallized from CH_2Cl_2 /ether to get Colorless crystalline solid with 96% yield. ¹H NMR (ppm, CDCl₃): $\delta = 0.84$ (t, 3J = 5.2 Hz, 3H, CH₃), 1.20-1.29 (m, 26H, CH₂), 1.56 (t, J³ = 5.9 Hz, 3H, CH₃), 1.88 (m, 2H, CH₂), 3.69 (t, J³ = 1.8 Hz, 2H, CH₂), 4.28-4.33 (m, 2H, CH₂), 4.41-4.44 (m, 2H, CH₂), 7.37 (s, 1H, CH), 7.51 (s, 1H, CH), 10.34 (s, 1H, CH). Anal. Calculated for C₂₁H₄₀N₂OBr: C, 60.13; H, 10.33; N, 6.68. Found: C, 60.40; H, 10.60; N, 6.68.

Synthesisof1-Hexadecyl-3-ethylimidazoliumIodide, $[C_{16}EIm]I$:Ethylimidazole (0.5 g, 5.2 mmol) and 1-iodohexadecane (5.2 mmol) were mixed in 50

mL round bottom flask and was refluxed at 90 °C for 3 h. After completion of reaction

crude product was recrystallized from CH₂Cl₂/ether to get Colorless crystalline solid with 96% yield. ¹H NMR (ppm, CDCl₃) : $\delta = 0.86$ (t, J³ = 6.4Hz, 3H, CH₃), 1.23-1.32 (m, 26H, CH₂), 1.62 (t, J³ = 7.4Hz, 3H, CH₃), 1.90-1.95 (m, 2H, CH₂), 4.33 (t, J³ = 7.4

Hz, 2H, CH₂), 4.40-4.47 (m, 2H, CH₂), 7.34 (s, 1H, CH), 7.44 (s, 1H, CH), 10.23 (s, 1H, CH). Anal. Calculated for C₂₁H₄₀N₂I: C, 55.92; H, 9.12; N, 6.12. Found: C, 56.24; H, 9.21; N, 6.25.

Synthesis of 1-Hexadecyl-3-ethylimidazolium Hexafluorophosphate, $[C_{16}EIm]PF_6$: $[C_{16}EIm]PF_6$ salt was prepared by anion metathesis of $[C_{16}EIm]Br H_2O$ salt, in MeOH-H₂O (15/85 v/v) solvent system using AgPF₆. The precipitates were isolated by filtration. The crude product obtained was washed with a lot of MeOH-H₂O (15/85 v/v). A light yellow product was obtained with about 75% yield. ¹H NMR (ppm, CDCl₃) : $\delta = 0.87$ (t, J³ = 6.4Hz, 3H, CH₃), 1.26-1.34 (m, 27H, CH₂), 1.56 (t, J³ = 7.4Hz, 3H, CH₃), 1.88 (t, 2H, CH₂), 4.29 (t, J³ = 7.4 Hz, 2H, CH₂), 4.26 (q, 2H, CH₂), 7.28 (s, 1H, CH), 7.32 (s, 1H, CH), 8.89 (s, 1H, CH).

Figure S1. The dependence of layer spacing *d* on chain length *n*, along with the best

fit linear equations for $[C_nVIm]X$ in the crystal phase.

Figure S2. Downfield region of ¹H NMR spectra (600 MHz) in CD_2Cl_2 of (a)

[C₁₆VIm]PF₆, (b) [C₁₆VIm]PF₆+ TBAI (1:1), (c) [C₁₆VIm]PF₆+ TBAI (1:2), (d)

[C₁₆VIm]PF₆+TBAI (1:3), (e) [C₁₆EIm]PF₆, (f) [C₁₆EIm]PF₆+TBAI (1:1), (g)

[C₁₆EIm]PF₆+TBAI (1:2), (h) [C₁₆Eim]PF₆+TBAI (1:3).

Table S1: NMR	peak values for	r the $[C_{16}Vim]PF_6$	and $[C_{16}EIm]PF_6p$	rotons.
	1			

Salt	Additive	Equivalence	Chemical shift for the corresponding proton							
			in $CD_2Cl_2(\delta ppm)$							
			H ²	H^4	H^{5}	H^{7}	H^{6}	H ^a	H ^b	H ^c
[C ₁₆ EIm]PF ₆	None	-	8.89	7.32	7.28	4.30	4.20	-	-	-
[C ₁₆ EIm]PF ₆	TBAI	1:1	9.64	7.42	7.35	4.34	4.25	-	-	-
[C ₁₆ EIm]PF ₆	TBAI	1:2	9.85	7.50	7.40	4.38	4.30	-	-	-
[C ₁₆ EIm]PF ₆	TBAI	1:3	9.92	7.54	7.44	4.35	4.27	-	-	-
[C ₁₆ VIm]PF ₆	None	-	8.77	7.37	7.56	-	4.21	5.48	5.79	7.08

[C ₁₆ VIm]PF ₆	TBAI	1:1	9.98	7.29	7.69	-	4.31	5.43	5.65	7.29
[C ₁₆ VIm]PF ₆	TBAI	1:2	10.31	7.53	7.79	-	4.34	5.40	5.97	7.37
[C ₁₆ VIm]PF ₁₆	TBAI	1:3	10.43	7.58	7.86	-	4.34	5.38	5.99	7.40

Supplementary Material (ESI) for *Journal of Materials Chemistry* This journal is © the Royal Society of Chemistry 2011