Supplementary Information

A new route to porous monolithic organic frameworks via cyclotrimerization

By Marcus Rose, Nicole Klein, Irena Senkovska, Christian Schrage, Philipp Wollmann, Winfried Böhlmann, Bertram Böhringer, Sven Fichtner, and Stefan Kaskel*

Table S1: Porosity of OFC-2 to OFC-4

		Specific surface area (BET, p/p ₀ =0.3) / m ² g ⁻¹			
Linker	OFC-	А	В		
$\searrow \longrightarrow$	2	650	12 (565 ^a)		
est of the second secon	3	8	273		
P P P	4	40	399		

^aSynthesis in a solution (toluene) instead of a solvent-free melt.

Figure S1. Powder XRD patterns for OFC-1A (blue) and OFC-1B (red) confirming an amorphous structure for the products of both synthetic routes.

Figure S2. Photographs of the OFC-1A synthesis in solution (0.2 g 14DAB in 60 ml Ethanol/Toluene (5:1)), taken directly after the addition of different amounts of SiCl₄ (from the left to the right image: 0 ml, 8 ml, 10 ml, 12 ml, 12 ml after 30 min).

Figure S3. Dimerization reaction of two acetyl groups as a conceivable side reaction to the cyclotrimerization. Reaction with an electrophil E (e.g. *Lewis* acid or proton) can lead to a partial oxidation of the π -electron system and the resulting black color.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S4. Porosity of OFC-1A in dependence of the amount of 4-toluene sulfonic acid relative to the educt amount.

Figure S5. Porosity of OFC-1A in dependence of the reaction temperature.

Fig. S6. Porosity of OFC-1A in dependence of the amount of the reaction time.

Figure S7. FTIR spectra of 1,4-diacetylbenzene (bottom), OFC-1A (middle) and OFC-1B (top) measured in diffuse reflexion mode.

Figure S8. ¹³C CP MAS NMR spectra of OFC-1A and -1B revealing aromatic carbon atoms.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S9. ¹H MAS NMR spectra of OFC-1A and -1B reveal aromatic and aliphatic C-H groups indicating an incomplete cross-linking.

Figure S10. DTA (small lines) and TG (bold lines) of OFC-1A (filled lines) and OFC-1B (dashed lines).

	OFC-1A		OFC-1B
С	97.35	С	98.43
0	1.34	0	1.57
Ν	1.17	S	0
Na	0.13		

Table S3. Results of the elemental analysis and comparison with theoretical values (wt-%). ^aEstimated as the non C,H atoms (residue).

Experimental	OI	FC		Theoretical composition		
	1A	1B		100% CT	100% Dim	0% Reaction
				$= C_{10}H_6$	= 50% CT	(14DAB)
					$= C_{10}H_8O$	$= C_{10}H_{10}O_2$
С	82.9	87.0	С	95.2	83.3	74.1
Н	4.9	4.9	Н	4.8	5.6	6.2
O^a	n.d.	8.1	0	-	11.1	19.7
H/C ratio in %	5.9	5.6		5.0	6.7	8.4
O ^a /C ratio in %	n.d.	9.3		0.0	13.3	26.6
Ν	1.0					
Na	0.1					

Figure S11. *n*-Butane physisorption isotherms of OFC-1A (diamonds) and OFC-1B (squares) measured at 30 °C. Filled symbols denote adsorption and empty symbols denote desorption, respectively.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S12. High pressure hydrogen adsorption of OFC-1A (diamonds) and OFC-1B (squares) measured at -196 °C. The inset shows the low pressure hydrogen physisorption isotherm measured up to 1 bar.

Figure S13. Strucutral simulations of a dendrimer of OFC-1 after different cyclotrimerization steps. Beginning with the 6th reaction step not all acetyl end groups are accessible for further reaction.