Electronic Supplementary Information

For the manuscript

Nanoporous Copolymer Networks Through Multiple Friedel-Crafts-Alkylation - Studies on Methane and Hydrogen Storage

by

Matthias Georg Schwab,*^{*a*} Angela Lennert,^{*b,d*} Jörg Pahnke,^{*b*} Gerhard Jonschker,^{*b*} Matthias Koch,^{*b*} Irena Senkovska,^{*c*} Matthias Rehahn^{*d*} and Stefan Kaskel*^{*c*}

^{*a*}Max Planck Institute for Polymer Research Ackermannweg 10, D-55128 Mainz, Germany schwab@mpip-mainz.mpg.de

^bMerck KGaA Frankfurter Straße 250, D-64293 Darmstadt, Germany

> ^cDresden University of Technology Department of Inorganic Chemistry Bergstraße 66, D-01062 Dresden, Germany stefan.kaskel@chemie.tu-dresden.de

^dDarmstadt University of Technology Ernst-Berl-Institute for Technical and Macromolecular Chemistry Petersenstraße 22, D-64287 Darmstadt, Germany

Materials and methods

The starting materials were purchased from Aldrich (4,4'-bis(chloromethyl)biphenyl, iron(III)chloride), ABCR (fluorene), Merck (9,9'-spirobi(fluorene), dibenzofuran, dibenzothiophene, 1,2-dichloroethane). The compounds were used as received without further purification.

Fourier transform infrared (FTIR) spectra were collected using KBr pellets on a Bruker Equinox55 spectrometer.

SEM measurements were performed on a Carl Zeiss Supra 35 scanning electron microscope.

 13 C [1H] cross-polarization magic angle spinning (CP-MAS) NMR spectra were measured on a Bruker Avance 400 operating at 100.68 MHz for 13 C and 400.4 for 1 H. The NMR experiments were carried out at MAS of 10.0 kHz using zirconia rotors of 4 mm in diameter.

Nitrogen adsorption experiments and micropore analysis were conducted at 77 K using an ASAP 2420 from Micromeritics and a Quantachrome Autosorb1C apparatus. Before adsorption measurements, the samples were degassed in vacuum at 473 K for 12 h. Pore volumes at $p/p_0 = 0.1$ and $p/p_0 = 0.8$ were converted into the corresponding liquid volumes using a nitrogen density of $1.25 \cdot 10^{-3}$ g/cm³ (gaseous) and $8.10 \cdot 10^{-1}$ g/cm³ (liquid).

Low pressure hydrogen adsorption isotherms were measured at 77 K up to 1 bar using a Quantachrome Autosorb1C apparatus. Before adsorption measurements, the samples were degassed in vacuum at 473 K for 12 h. Gravimetric storage capacities were calculated using a hydrogen density of $8.99 \cdot 10^{-5}$ g/cm³ (gaseous).

High-pressure methane adsorption measurements were conducted at room temperature using a Rubotherm magnetic suspension balance. Prior to the measurements, the samples were degassed at 473 K for 12 h.

High purity gases were used for the adsorption measurements (nitrogen: 99.999 %, hydrogen: 99.999 %, methane: 99.5 %).

Experimental section

General synthetic procedure

4,4'-bis(chloromethyl)biphenyl and the corresponding comonomer (see tables below) are dissolved in 40 ml of dry 1,2-dichloroethane. The solution is degassed by argon bubbling and iron(III)chloride is added. Subsequently, the reaction mixture is heated to 80 °C for 18 h under an inert atmosphere. The resulting precipitate is collected by filtration and thoroughly washed with water, methanol and methyl *tert*-butyl ether. The samples are dried at 80 °C under reduced pressure.

	FLUO-10	sFLUO-10	DBF-10	DBT-10
BCMBP [mmol]	3.71	3.49	3.71	3.68
BCMBP [mg]	981	923	980	973
comonomer [mmol]	0.41	0.39	0.41	0.41
comonomer [mg]	70	124	71	77
iron(III)chloride [mmol]	4.12	3.88	4.12	4.09
iron(III)chloride [mg]	682	642	682	678

 Table S1. Networks containing 10 mol% of comonomer.

 Table S2. Networks containing 25 mol% of comonomer.

	FLUO-25	sFLUO-25	DBF-25	DBT-25
BCMBP [mmol]	3.26	2.80	3.26	3.20
BCMBP [mg]	862	741	861	846
comonomer [mmol]	1.09	0.93	1.09	1.07
comonomer [mg]	184	299	188	201
iron(III)chloride [mmol]	4.35	3.73	4.35	4.27
iron(III)chloride [mg]	719	618	718	706

Figure S1. Fourier transform infrared (FTIR) spectra of the monomer BCMBP.

Figure S2. Fourier transform infrared (FTIR) spectra of FLUO-25, sFLUO-25, DBF-25 and DBT-25.

Figure S3. Fourier transform infrared (FTIR) spectra of FLUO and FLUO-25.

Figure S4. Fourier transform infrared (FTIR) spectra of sFLUO and sFLUO-25.

Figure S5. Fourier transform infrared (FTIR) spectra of DBF and DBF-25.

Figure S6. Fourier transform infrared (FTIR) spectra of DBT and DBT-25.

Figure S7. ¹³C CP-MAS NMR spectra of FLUO-25, sFLUO-25, DBF-25 and DBT-25.

Nitrogen adsorption analysis

Figure S8. Nitrogen sorption (filled symbols) and desorption (empty symbols) isotherms of FLUO-10.

Figure S9. Nitrogen sorption (filled symbols) and desorption (empty symbols) isotherms of FLUO-25.

Figure S10. Nitrogen sorption (filled symbols) and desorption (empty symbols) isotherms of sFLUO-10.

Figure S11. Nitrogen sorption (filled symbols) and desorption (empty symbols) isotherms of sFLUO-25.

Figure S12. Nitrogen sorption (filled symbols) and desorption (empty symbols) isotherms of DBF-10.

Figure S13. Nitrogen sorption (filled symbols) and desorption (empty symbols) isotherms of DBF-25.

Figure S14. Nitrogen sorption (filled symbols) and desorption (empty symbols) isotherms of DBT-10.

Figure S15. Nitrogen sorption (filled symbols) and desorption (empty symbols) isotherms of DBT-25.

Hydrogen adsorption analysis

Figure S16. Volumetric hydrogen adsorption (filled) and desorption (empty symbols) isotherms of copolymer networks containing 10 mol% comonomer.

Figure S17. Volumetric hydrogen adsorption (filled) and desorption (empty symbols) isotherms of copolymer networks containing 25 % comonomer.

High pressure methane adsorption analysis

Figure S18. High pressure gravimetric methane adsorption and desorption isotherm of FLUO-10.

Figure S19. High pressure gravimetric methane adsorption and desorption isotherm of sFLUO-10.

Figure S20. High pressure gravimetric methane adsorption and desorption isotherm of sFLUO-25.

Figure S21. High pressure gravimetric methane adsorption and desorption isotherm of DBF-10.

Figure S22. High pressure gravimetric methane adsorption and desorption isotherm of DBF-25.

Figure S23. High pressure gravimetric methane adsorption and desorption isotherm of DBT-10.

Figure S24. High pressure gravimetric methane adsorption and desorption isotherm of DBT-25.

Light-Optical Microscopy (LOM)

Figure S25. Light-optical micrographs of FLUO-10.

Figure S26. Light-optical micrographs of sFLUO-10.

Figure S27. Light-optical micrographs of DBF-10.

Figure S28. Light-optical micrographs of DBT-10.

Scanning Electron Microscopy (SEM)

Figure S29. Scanning electron micrographs of sFLUO-10.

Figure S30. Scanning electron micrographs of DBF-10.