Triazole–Pyridine Ligands: A Novel Approach to Chromophoric Iridium Arrays

Michal Juríček,^{*a*} Marco Felici, ^{*}^{*a*} Pablo Contreras-Carballada,^{*b*} Ján Lauko,^{*a*} Sandra Rodríguez Bou,^{*a*} Paul H. J. Kouwer,^{*a*} Albert M. Brouwer^{*b*} and Alan E. Rowan^{*}^{*a*}

^a Institute for Molecules and Materials, Radboud University Nijmegen, Molecular Materials, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands

^b Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P.O. Box 94157, 1090 GD Amsterdam, The Netherlands

m.felici@science.ru.nl, a.rowan@science.ru.nl

Supporting Information

Experimental Section	S2-S21
Photophysical Characterisation	S22-S26
Electrochemical Characterisation	S27
References	S28

Experimental Section

PRECAUTION: NaN₃ is extremely toxic and may explode if heated.

Materials. All chemicals and solvents were purchased from commercial sources and used without further purification unless stated otherwise. Solvents were distilled prior to use: THF, toluene (Na); CH_2Cl_2 , Et_3N and MeOH (CaH₂). All cross-coupling and "click" reactions were performed under an argon atmosphere using Schlenk techniques and deoxygenated solvents (freeze-pump-thaw in 3 cycles, <0.4 mbar). Silica gel (0.035–0.070 mm) from Acros or silica gel (0.063–0.200 mm) from J. T. Baker were used for column chromatography and silica 60 F254 coated glass plates (Merck) were used for thin layer chromatography (TLC). Spacer molecule $16^{[S1]}$ and $meso-\Delta$, Λ -(C^N)₂Ir(μ -Cl)₂Ir(C^N)₂ (C^N = 2-phenylpyridine or 2-(1*H*-pyrazol-1-yl)pyridine)^[S2] are known from the literature and were prepared following the described procedures.

Instrumentation. FT-infrared spectra were recorded on a ThermoMattson IR300 spectrometer equipped with a Harrick ATR unit. UV-vis spectra were recorded on a Varian Cary 50 spectrophotometer. ¹H and ¹³C NMR spectra were recorded at 25 °C on a Bruker DPX-200 instrument operating at 200 and 50 MHz, respectively, on a Bruker DMX-300 instrument operating at 300 and 75 MHz, respectively, or on a Varian Inova 400 instrument operating at 400 MHz (¹H NMR). Chemical shifts (δ) are reported in parts per million (ppm) relative to the residual peak of the solvent (¹H and ¹³C NMR, respectively): CDCl₃ (δ = 7.26 and 77.0 ppm) and DMSO- d_6 (δ = 2.50 and 39.5 ppm). Multiplicities of the ¹H NMR signals are assigned as following: s (singlet), d (doublet), t (triplet), m (multiplet), b (broad) or as a combination (e.g. bd (broad doublet), dd (doublet of doublets), etc.). Coupling constants are reported as a J value in Hertz (Hz). The number of protons (n) for a given resonance is indicated as nH and is based on spectral integration values. The resolution of the spectrum was increased, when necessary, by performing an exponential or TRAF apodisation of the FID. A number of ¹³C NMR signals (n) that were overlapped within the resolution limits of the NMR technique (after apodisation) is indicated as nC overlapped. EIMS and HRMS (EI) measurements were performed on a Micromass VG7070E instrument. ESIMS measurements were performed on a Thermo Finnigan LCQ Advantage MAX instrument by using MeOH or MeOH/THF (95/5) as a solvent. HRMS (ESI) measurements were performed on a JEOL AccuTOF-CS instrument by using MeOH or MeOH/THF (95/5) as a solvent. GCMS measurements were performed on a Thermo Finnigan PolarisQ GS/MS instrument. MALDI-ToF MS measurements were performed on a Bruker BiFLEX III spectrometer using reflectron mode and dithranol (20 mg/mL in THF) as a matrix.

General procedure S1 for the Sonogashira cross-coupling reactions. Aryl halide, palladium catalyst and CuI were placed in a Schlenk tube equipped with a stirrer and the system was evacuated and filled with argon three times. After the addition of a mixture of Et₃N and THF, and terminal acetylene, the resulting mixture was heated in a closed system under an argon atmosphere before it was quenched with NH₄Cl (1M). The crude product was extracted with CH₂Cl₂ and the combined organic layers were dried over Na₂SO₄. After filtration, the solvents were evaporated and the residue was purified by column chromatography on silica gel to afford the pure product.

General procedure S2 for the CuAAC ("click") reactions. Azide, terminal acetylene and CuI were placed in a Schlenk tube equipped with a stirrer and the system was evacuated and filled with argon three times. After the addition of THF and PMDTA, the resulting mixture was stirred under an argon atmosphere before it was quenched with NH₄Cl (1M). The crude product was extracted with CH₂Cl₂ and the combined organic layers were dried over Na₂SO₄. After filtration, the solvents were evaporated and the residue was purified by column chromatography on silica gel to afford the pure product.

Synthesis of the mono- and difunctionalised precursors

ήч

C₁₂H₂₅

Azidocyclohexane. This compound was prepared following the literature procedure for 1-azidobutane.^[S3] A mixture of bromocyclohexane (5.0 g, 31 mmol), NaN₃ (2.2 g, 34 mmol), MeOH (4 mL) and water (8 mL) was stirred at 90 °C for 16 h in a closed system before it was allowed to cool down to room temperature. The crude product was extracted with CH₂Cl₂ and the organic layer was washed three times with water and dried over Na₂SO₄. After filtration, the solvent was evaporated (150 mbar, 40 °C) and the residue was purified by column chromatography on silica gel using pentane to afford the pure product (0.76 g, 20%) as a colourless liquid. ¹H NMR (200 MHz, CDCl₃) δ 3.49-3.22 (m, 1H, CH), 2.04-1.08 (m, 10H, CH₂). ¹³C NMR (50 MHz, CDCl₃) § 59.8, 31.6, 25.2, 24.2. IR (neat, cm⁻¹) 2935, 2859, 2093 (N₃), 1453, 1254, 907, 731. GCMS *m/z* (%) calcd for C₆H₁₁N₃ 125, found 83 ([M⁺• - N₃], 36), 55 (89), 41 (100).

4,4'-(1,4-Phenylene)bis(2-methylbut-3-yn-2-ol) (32). See the General procedure S1 (p S2): 1,4-diiodobenzene (0.50 g, 1.5 mmol), Pd(PPh₃)₄ (88 mg, 76 µmol), CuI (15 mg, 76 µmol), Et₃N/THF (30 mL, 2/1), 2methylbut-3-yn-2-ol (0.44 mL, 4.6 mmol), 60 °C, 20 h. Column chromatography on silica gel using pentane/ethyl acetate (4/1 to 1/1) afforded the pure product (0.36 g, 97%) as a white solid. ¹H NMR (300 MHz, CDCl₃) § 7.34 (s, 4H, CArH), 2.05 (s, 2H, OH), 1.61 (s, 12H, CH₃). ¹³C NMR (75 MHz, CDCl₃) & 131.5 (CH), 122.6, 95.4, 81.7, 65.6, 31.4 (CH₃). IR (neat, cm⁻¹) 3350 (O-H), 2980, 2920, 2855, 2146 (C=C), 1519, 1506, 1463, 1377, 1359, 1273, 1185, 1161, 962, 907, 836, 612. GCMS *m/z*

(%) 242 ([M⁺•], 36), 227 (100), 206 (40). HRMS (EI) m/z calcd for C₁₆H₁₈O₂ 242.1307, found 242.1307 ($|\Delta| = 0.1$ ppm).

1,4-Diethynylbenzene (15). This compound is also commercially available. A mixture of 32 (0.35 g, 1.4 mmol), NaOH (0.58 g, 14 mmol) and toluene (30 mL) was refluxed for 17 h before the solvent was evaporated and the residue was purified by column chromatography on silica gel using pentane/ethyl acetate (95/5) to afford the pure product (79 mg, 44%) as a white solid. ¹H NMR (300 MHz, CDCl₃) § 7.44 (s, 4H, C_{Ar}H), 3.17 (s, 2H, CCH). ¹³C NMR (75 MHz, CDCl₃) δ 132.0 (CH), 122.5, 83.0, 79.0 (CH). IR (neat, cm⁻¹) 3300 (CC-H), 2103 (C=C), 1919, 1795, 1496, 1257, 837, 708, 676, 636, 546, 496.

4,4'-(9,9-Didodecyl-9H-fluorene-2,7-diyl)bis(2-methylbut-3-yn-2-ol) (33). See the General procedure S1 (p S2): 2,7dibromo-9,9-didodecyl-9H-fluorene (1.0 g, 1.5 mmol), Pd(PPh₃)₄ (88 mg, 76 µmol), CuI (15 mg, 76 µmol), Et₃N/THF (30 mL, 2/1), 2-methylbut-3-yn-2-ol (0.44 mL, 4.5 mmol), C12H25 C₁₂H₂₅ 60 °C, 20 h. Column chromatography on silica gel using pentane/ethyl acetate (4/1) afforded the pure product (0.88 g, 87% yield) as a yellowish solid. ¹H NMR (300 MHz, $CDCl_3$) δ 7.59 (dd, J = 7.8, 0.7 Hz, 2H, $C_{Ar}H$), 7.39 (dd, J = 7.8, 1.5 Hz, 2H, $C_{Ar}H$), 7.37

(dd, J = 1.4, 0.7 Hz, 2H, CArH), 2.11 (s, 2H, OH), 1.96–1.88 (m, 4H, CCH₂), 1.66 (s, 12H, CCH₃), 1.34–0.96 (m, 36H, CH₂), 0.90-0.82 (m, 6H, CH₂CH₃), 0.60-0.48 (m, 4H, CH₂). ¹³C NMR (75 MHz, CDCl₃) δ (1C overlapped) 150.9, 140.6, 130.7 (CH), 126.0 (CH), 121.4, 119.8 (CH), 93.9, 83.0, 65.7, 55.1, 40.3 (CH₂), 31.9 (CH₂), 31.5 (CH₃), 30.0 (CH₂), 29.58 (CH₂), 29.56 (CH₂), 29.5 (CH₂), 29.31 (CH₂), 29.28 (CH₂), 23.7 (CH₂), 22.6 (CH₂), 14.1 (CH₃). IR (neat, cm⁻¹) 3330 (O-H), 2980, 2920, 2850, 2228 (C=C), 1887, 1774, 1463, 1416, 1377, 1364, 1277, 1169, 966, 923, 888, 824, 724, 560. MALDI-ToF MS m/z calcd for C₄₇H₇₀O₂ 666.54, found 666.25.

9,9-Didodecyl-2,7-diethynyl-9H-fluorene (17). A mixture of 33 (0.83 g, 1.2 mmol), NaOH (0.50 g, 12 mmol) and toluene (50 mL) was refluxed for 40 h before the solvent was evaporated. Column chromatography on silica gel using pentane/ethyl acetate (95/5) afforded the pure product (0.64 g, 94%) as a yellow oil. C12H25 ¹H NMR (300 MHz, CDCl₃) δ 7.64 (dd, J = 7.8 Hz, 0.6 Hz, 2H, C_{Ar}H), 7.48 (dd, J = 7.8 Hz, 1.5 Hz, 2H, CArH), 7.46 (dd, J = 1.5 Hz, 0.6 Hz, 2H, CArH), 3.15 (s, 2H, CCH), 1.98-1.88 (m, 4H, CCH2), 1.34-0.96 (m, 36H, CH₂), 0.91-0.82 (m, 6H, CH₃), 0.62-0.48 (m, 4H, CH₂). ¹³C NMR (75 MHz, CDCl₃) δ (1C overlapped) 151.0, 141.0, 131.2 (CH), 126.5 (CH), 120.8, 119.9 (CH), 84.5, 77.3 (CH), 55.2, 40.2 (CH₂), 31.9 (CH₂), 30.0 (CH₂), 29.59 (CH₂), 29.58 (CH₂), 29.5 (CH₂), 29.3 (CH₂), 29.2 (CH₂), 23.7 (CH₂), 22.7 (CH₂), 14.1 (CH₃). IR (neat, cm⁻¹) 3309 (CC-H), 2924, 2850, 2106 (C=C), 1464, 889, 821, 611. MALDI-ToF MS *m/z* calcd for C₄₁H₅₈ 550.45, found 550.47.

1,4-Diazidobenzene (24). A mixture of benzene-1,4-diamine (5.0 g, 49 mmol) and TFA (120 mL) was cooled down to -20 °C and NaNO₂ (10 g, 0.15 mol) was slowly added to the stirred solution. During the addition, the temperature was kept below -5 °C. After 1 h, NaN₃ (9.6 g, 0.15 mol) was slowly added to the solution and the mixture was stirred at -5 °C for an additional 1 h before it was diluted with water. The crude product was extracted with CH₂Cl₂ and the combined organic layers were washed with aq. NH₄Cl (1M) and dried over Na₂SO₄. After filtration, the solvent was evaporated and the residue was purified by column chromatography on silica gel using pentane/ CH_2Cl_2 (9/1) to afford the pure product (1.8 g, 23%) as a yellow crystalline solid. The product is light and heat sensitive, and is stored at – 20 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.01 (s, 4H, C_{Ar}H). ¹³C NMR (75 MHz,

CDCl₃) § 136.7, 120.3 (CH). IR (neat, cm⁻¹) 2140 (N₃), 2100 (N₃), 2071 (N₃), 1500, 1295, 1275, 1143, 829, 778, 582, 530. GCMS m/z (%) 160 ([M+•], 24), 132 (38), 104 (72), 77 (100), 52 (98). HRMS (EI) m/z calcd for C₆H₄N₆ 160.0498, found $160.0494 (|\Delta| = 2.2 \text{ ppm}).$

Cyclohexane-1,4-diyl bis(4-methylbenzenesulfonate) (cis-34/trans-34, 1/1). A solution of tosyl chloride (7.2 g, 38 mmol) in CH₂Cl₂ (30 mL) was slowly added to a cooled solution (0 °C) of cyclohexane-1,4-diol (2.0 g, 17 mmol) in a 7/1 mixture of CH2Cl2 and Et3N (80 mL) while stirring and the resulting mixture was kept at 0 °C OTs overnight before the solvents were evaporated. The residue was purified by column chromatography on silica gel using pentane/ CH_2Cl_2 (2/1) to remove the excess of tosyl chloride and CH_2Cl_2 to afford the pure

product (3.0 g, 40%) as a white solid as a 1/1 mixture of *cis*- and *trans*-isomer.

Mixture (1/1) of cis-34 and trans-34. ¹H NMR (300 MHz, CDCl₃) § 7.79-7.72 (m, 8H, AA' of AA'BB'), 7.35-7.28 (m, 8H, BB' of AA'BB'), 4.65-4.46 (m, 4H, CH), 2.44 (s, 12H, CH₃), 1.94-1.74 (m, 16H, CHH), 1.69-1.52 (m, 16H, CHH). ¹³C NMR (75 MHz, CDCl₃) δ (1C overlapped) 144.7, 144.6, 134.3, 134.1, 129.80, 129.78, 127.5, 127.4, 78.1, 77.7, 27.8, 26.6, 21.5. IR (neat, cm⁻¹) 3066, 3032, 2953, 2921, 2871, 1598, 1446, 1356, 1188, 1175, 1094, 908, 876, 859, 814, 786, 683, 669, 571, 556. HRMS (ESI) m/z calcd for C₂₀H₂₄O₆S₂ + Na⁺ 447.09120, found 447.08924 ($|\Delta|$ = 4.38 ppm).

1,4-Diazidocyclohexane (cis-25/trans-25, 1/1). A mixture of 34 (2.0 g, 4.7 mmol), NaN₃ (0.76 g, 12 mmol) and MeOH (50 mL) was heated to reflux for 48 h before the solvent was evaporated and the residue was dried under the vacuum. After the addition of CHCl₃, the white precipitate was filtered off and washed with CHCl₃. The organic fractions were combined and after evaporation of the solvent, the residue was purified by column chromatography on silica gel using pentane/CH2Cl2 (3/1, 3/4 and 1/1) to afford the pure product (0.30 g,

40%) as a colourless oil as a 1/1 mixture of *cis*- and *trans*-isomer.

Mixture (1/1) of cis-25 and trans-25. 1H NMR (400 MHz, CDCl₃) & 3.57-3.45 (m, 2H, CH), 3.44-3.30 (m, 2H, CH), 2.08-1.91 (m, 4H, CHH), 1.82-1.60 (m, 8H, CHH), 1.49-1.33 (m, 4H, CHH). ¹³C NMR (75 MHz, CDCl₃) δ 58.2, 57.3, 28.6, 27.1. IR (neat, cm⁻¹) 2937, 2901, 2863, 2088 (N₃), 1445, 1369, 1253, 1015, 913. GCMS *m/z* (%) 82 ([M⁺⁺ - N₆], 26), 68 (40), 54 (98), 41 (100).

Synthesis of the monomeric building blocks 13 and 14

Br

8.62 (dd, J = 2.4 Hz, 0.6 Hz, 1H, C_{Ar}H), 7.76 (dd, J = 8.4 Hz, 2.4 Hz, 1H, C_{Ar}H), 7.33 (dd, J = 8.4 Hz, 0.8 Hz, 1H, C_{Ar}H), 0.26 (s, 9H, CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 151.1 (CH), 141.4, 138.7 (CH), 128.2 (CH), 120.3, 102.6, 96.4, -0.4 (CH₃). IR (neat, cm⁻¹) 3031, 2957, 2897, 2165 (C=C), 1562, 1542, 1448, 1248, 1092, 1002, 869, 842, 759, 680. GCMS m/z (%) 255 ([M⁺⁺ + 2], 35), 253 ([M⁺⁺], 34), 240 (98), 238 (100). HRMS (EI) m/z calcd for C₁₀H₁₂BrNSi 252.9922, found 252.9923 ($|\Delta| = 0.3$ ppm). ¹H NMR and MS data were in agreement with those previously described.^[S4]

5-((Triisopropylsilyl)ethynyl)-2-((trimethylsilyl)ethynyl)pyridine (22). See the General procedure S1 (p S2): 21 (3.1 g, 12 mmol), Pd(PPh₃)₄ (0.28 g, 0.24 mmol), CuI (93 mg, 0.49 mmol), Et₃N/THF (30 mL, 2/1), (triisopropylsilyl)acetylene (3.0 mL, 13 mmol), 60 °C, 22 h. Column chromatography on silica gel using pentane/ethyl acetate (99/1) afforded the pure product (3.9 g, 90%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 8.61 (dd, J = 2.1 Hz, 0.8 Hz, 1H, C_{Ar}H), 7.68 (dd, J = 8.1 Hz, 2.1 Hz, 1H, C_{Ar}H), 7.38 (dd, J = 8.1 Hz, 0.9 Hz, 1H, C_{Ar}H), 1.16–1.09 (m, 21H, CH(CH₃)₂), 0.27 (s, 9H, SiCH₃). ¹³C NMR (75 MHz, CDCl₃) δ 152.6 (CH), 141.5, 138.8 (CH), 126.4 (CH), 119.8, 103.4, 103.1, 96.9, 96.8, 18.6 (CH), 11.2 (CH₃), -0.4 (CH₃). IR (neat, cm⁻¹) 2959, 2942, 2891, 2865, 2159 (C=C), 1462, 1247, 869, 842. GCMS *m*/z (%) 312 ([M⁺⁺ - C₃H₇], 100), 270 (46). HRMS (EI) *m*/z calcd for C₂₁H₃₃NSi₂ 355.2152, found 355.2157 (| Δ | = 1.5 ppm).

2-Ethynyl-5-((triisopropylsilyl)ethynyl)pyridine (23). A mixture of 22 (0.92 g, 2.6 mmol), K_2CO_3 (1.8 g, 13 mmol), THF (35 mL) and MeOH (35 mL) was stirred at room temperature for 16 h before K_2CO_3 was filtered off and washed with CH_2Cl_2 . After the solvents were evaporated, the crude product was purified by column chromatography on silica gel using pentane/ethyl acetate (99/1) to afford the pure product (0.58 g, 80%) as a yellowish oil. ¹H NMR (400 MHz, CDCl₃) δ 8.59 (dd, J = 2.1 Hz, 0.8 Hz, 1H, $C_{Ar}H$), 7.65 (dd, J = 8.2 Hz, 2.1 Hz, 1H, $C_{Ar}H$), 7.35 (dd, J = 8.0 Hz, 0.8 Hz, 1H, $C_{Ar}H$), 3.21 (s, 1H, CCH), 1.15–1.00 (m, 21H, $CH(CH_3)_2$). ¹³C NMR (75 MHz, CDCl₃) δ 152.6 (*C*H), 140.7, 138.7 (*C*H), 126.4 (*C*H), 120.1, 102.9, 97.0, 82.4, 78.7 (*C*H), 18.4 (*C*H), 11.0 (*C*H₃). IR (neat, cm⁻¹) 3303 (CC-H), 2942, 2890, 2862, 2155

(CH), 120.1, 102.9, 97.0, 82.4, 78.7 (CH), 18.4 (CH), 11.0 (CH₃). IR (neat, cm⁻¹) 3303 (CC-H), 2942, 2890, 2862, 2155 (C=C), 2110 (C=C), 1540, 1465, 1361, 1229, 1018, 996, 882, 843, 744, 675, 654. GCMS m/z (%) 240 ([M^{+•} - C₃H₇], 100), 212 (46), 198 (50), 184 (73), 170 (66). HRMS (EI) m/z calcd for C₁₈H₂₅NSi 283.1756, found 283.1756 ($|\Delta| = 0.1$ ppm).

2-(1-(4-Azidophenyl)-1*H*-1,2,3-triazol-4-yl)-5-((triisopropylsilyl)ethynyl)pyridine (13). To a solution of 24 (0.57 g, 3.6 mmol) in THF (20 mL), a solution of 23 (0.10 g, 0.36 mmol), CuI (34 mg, 0.18 mmol) and PMDTA (37 mg, 0.21 mmol) in THF (80 mL) was added drop wise over a period of 3 h and the mixture was stirred for additional 12 h under an argon atmosphere before the solvent was evaporated. CH_2Cl_2 was added and the mixture was washed with aq. NH_4Cl (1M) and dried over Na_2SO_4 . After filtration, the solvent was evaporated and the crude product was

purified by column chromatography on silica gel using pentane/CH₂Cl₂ (1/1) to afford the unreacted 24 and CH₂Cl₂/ethyl acetate (99.5/0.5 to 97/3) to afford the pure product (0.14 g, 85%) as a yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (dd, *J* = 2.0 Hz, 0.6 Hz, 1H, C_{Ar}*H*), 8.56 (s, 1H, C_{Ar}*H*), 8.19 (dd, *J* = 8.2 Hz, 0.6 Hz, 1H, C_{Ar}*H*), 7.87 (dd, *J* = 8.2 Hz, 2.1 Hz, 1H, C_{Ar}*H*), 7.83–7.78 (m, 2H, AA' of AA'XX'), 7.23–7.18 (m, 2H, XX' of AA'XX'), 1.18–1.12 (m, 21H, CH(CH₃)₂). ¹³C

NMR (75 MHz, CDCl₃) δ 152.5 (*C*H), 148.7, 148.5, 140.9, 139.8 (*C*H), 133.7, 122.0 (*C*H), 120.3 (*C*H), 120.2 (*C*H), 119.9, 119.5 (*C*H), 103.5, 95.6, 18.6 (*C*H), 11.3 (*C*H₃). IR (neat, cm⁻¹) 3054, 2958, 2940, 2921, 2865, 2158 (C=C), 2130 (N₃), 2093 (N₃), 1598, 1516, 1471, 1364, 1285, 1235, 1197, 1031, 1020, 991, 886, 849, 833, 802, 674, 609. HRMS (ESI) *m/z* calcd for C₂₄H₂₉N₇Si + H⁺ 444.23319, found 444.23207 ($|\Delta| = 2.54$ ppm).

2-(1-(4-Azidophenyl)-1H-1,2,3-triazol-4-yl)-5-ethynylpyridine (1). A mixture of 13 (0.23 g, 0.51 mmol), TBAF (0.25 mL, 1M in THF) and THF (30 mL) was stirred at room temperature in the dark for 24 h before the solvent was evaporated. The residue was purified by column chromatography on silica gel using pentane/ethyl acetate (5/1 and 3/2) to afford the pure product (90 mg, 62%) as a yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (dd, J = 2.1, 0.8 Hz, 1H, C_{Ar}H), 8.56 (s, 1H, C_{Ar}H), 8.21

'XX'), 7.23–7.17 (m, 2H, XX' of AA'XX'), 3.28 (s, 1H, CC*H*). ¹³C NMR (50 MHz, CDCl₃) δ 152.6, 149.1, 148.5, 140.9, 140.1, 133.6, 121.9, 120.28, 120.25, 119.6, 118.5, 81.1, 80.4. IR (neat, cm⁻¹) 3290 (CC-H), 2132 (N₃), 2096 (N₃), 1597, 1507, 1474, 1367, 1304, 1290, 1240, 1190, 1131, 1100, 1032, 990, 909, 848, 829, 803, 736, 656, 593, 533, 515, 493, 462. Molecular peak could not be detected by any of the available MS techniques (EI, ESI, GC, MALDI-ToF).

2-(1-(4-Azidocyclohexyl)-1H-1,2,3-triazol-4-yl)-5-((triisopropylsilyl)ethynyl)pyridine (trans-14/cis-14, 3/2). See the

General procedure S2 (p S2): 23 (45 mg, 0.16 mmol), 25 (0.15 g, 0.90 mmol), CuI (6 mg, 0.03 mmol), THF (13 mL), PMDTA (7 mg, 0.04 mmol), room temperature, 20 h. Column chromatography on silica gel using CH_2Cl_2 /ethyl acetate (99/1 to 4/1) afforded the pure product (55 mg, 77%) as a white solid as a 3/2 mixture of *trans-* and *cis-*isomer (the ratio was obtained from ¹H NMR).

(dd, J = 8.2, 0.9 Hz, 1H, C_{Ar}H), 7.89 (dd, J = 8.2, 2.1 Hz, 1H, C_{Ar}H), 7.83–7.77 (m, 2H, AA' of AA

Major isomer *trans*-14. (Measured from a 3/2 mixture of *trans*-14 and *cis*-14) ¹H NMR (400 MHz, CDCl₃) δ 8.65–8.59 (m, 1H, C_{Ar}H), 8.15 (s, 1H, C_{Ar}H), 8.11 (dd, J = 8.3, 0.5 Hz, 1H, C_{Ar}H), 7.82 (dd, J = 8.2, 2.1 Hz, 1H, C_{Ar}H), 4.51 (tt, J = 11.6, 4.1 Hz, 1H, NCH), 3.45 (tt, J = 11.2, 4.1 Hz, 1H, NCH), 2.41–2.32 (m, 2H, CHH), 2.25–2.17 (m, 2H, CHH), 1.95 (dddd, J = 13.5, 13.5, 11.6, 4.0 Hz, 2H, CHH), 1.59 (dddd, J = 13.7, 13.0, 11.3, 3.9 Hz, 2H, CHH), 1.20–1.05 (m, 21H, CH(CH₃)₂).

Minor isomer *cis*-14. (Measured from a 3/2 mixture of *trans*-14 and *cis*-14) ¹H NMR (400 MHz, CDCl₃) δ 8.65–8.59 (m, 1H, C_{Ar}H), 8.20 (s, 1H, C_{Ar}H), 8.10 (dd, J = 8.1, 0.5 Hz, 1H, C_{Ar}H), 7.82 (dd, J = 8.2, 2.1 Hz, 1H, C_{Ar}H), 4.56 (tt, J = 10.8, 4.4 Hz, 1H, NCH), 3.93 (tt, J = 3.4, 3.2 Hz, 1H, NCH), 2.20–1.98 (m, 6H, CHH), 1.78 (dddd, J = 12.4, 7.1, 4.3, 3.1 Hz, 2H, CHH), 1.20–1.05 (m, 21H, CH(CH₃)₂).

Mixture (3/2) of *trans*-14 and *cis*-14. ¹³C NMR (75 MHz, CDCl₃) δ (3C overlapped) 152.3, 149.0, 148.9, 147.7, 147.6, 139.8, 139.7, 120.3, 120.1, 119.5, 119.4, 119.22, 119.18, 103.6, 103.5, 95.24, 95.15, 58.62, 58.59, 58.3, 56.0, 31.1, 30.1, 28.5, 27.7, 18.6, 11.2. IR (neat, cm⁻¹) 2941, 2864, 2156 (C=C), 2094 (N₃), 1594, 1470, 1361, 1255, 1227, 881, 835, 696, 676. HRMS (ESI) *m/z* calcd for C₂₄H₃₅N₇Si + H⁺ 450.28014, found 450.27821 ($|\Delta|$ = 4.30 ppm).

Synthesis of the blocking group 19

^tBu

1-Azido-3,5-di-*tert*-butylbenzene (30). To a cooled solution (-10 °C) of 3,5-di-*tert*-butylaniline (0.50 g, 2.4 mmol) in TFA (20 mL), sodium nitrite (0.32 g, 4.6 mmol) was added in small portions over 15 min. The reaction mixture was stirred for additional 30 min at -10 °C before sodium azide (0.33 g, 5.1 mmol) was added in small portions over 5 min and the reaction mixture was stirred for additional 2 h at -10 °C. After the addition of a mixture of ice and water, the reaction mixture was extracted with CH₂Cl₂. The combined organic extracts

were washed with aq. Na₂CO₃ (10%) and dried over Na₂SO₄. After fi Itration, the solvent was evaporated and the crude product was purified by column chromatography on silica gel using pentane to afford the pure product (0.23 g, 41%) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.20 (t, *J* = 1.7 Hz, 1H, C_{Ar}*H*), 6.86 (d, *J* = 1.7 Hz, 2H, C_{Ar}*H*), 1.32 (s, 18H, CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 152.7, 139.1, 119.3, 114.3, 35.0, 31.3. IR (neat, cm⁻¹) 2962, 2098 (N₃), 1601, 1308, 703. GCMS *m/z* (%) 203 ([M^{+•} – N₂], 48), 188 (100). HRMS (EI) *m/z* calcd for C₁₄H₂₁N₃ 231.1735, found 231.1727 (| Δ | = 3.7 ppm).

4,4'-(5-Bromo-1,3-phenylene)bis(2-methylbut-3-yn-2-ol) (27). See the General procedure S1 (p S2): 1,3,5tribromobenzene (5.0 g, 16 mmol), CuI (1 mg, 6 μ mol), Pd(PPh₃)₄ (7 mg, 6 μ mol), Et₃N/THF (80 mL, 1/1), 2-methylbut-3-yn-2-ol (5.3 g, 63 mmol), 70 °C, 15 h. Column chromatography on silica gel using heptane/ethyl acetate (3/1 and 1/1) afforded the pure product (2.1 g, 41%) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 7.47 (d, *J* = 1.4 Hz, 2H, C_{Ar}*H*), 7.38 (t, *J* = 1.4 Hz, 1H, C_{Ar}*H*), 2.21 (s, 2H, OH), 1.59 (s, 12H, CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 134.0, 133.3, 124.7, 121.7, 95.6, 79.9, 65.5, 31.3. IR (neat, cm⁻¹) 3329 (O-H), 2978, 2932, 2866, 2247 (C=C), 1584, 1552, 1424, 1363, 1241, 1164,

1147, 961, 945, 908, 863, 823, 731, 677, 566, 537. GCMS m/z (%) 322 ([M^{+•} + 2], 12), 320 ([M^{+•}], 12), 307 (48), 305 (54), 289 (98), 287 (100). HRMS (EI) m/z calcd for C₁₆H₁₇BrO₂ 320.0412, found 320.0411 ($|\Delta| = 0.3$ ppm).

4,4'-(5-((Triisopropylsilyl)ethynyl)-1,3-phenylene)bis(2-methylbut-3-yn-2-ol) (28). See the General procedure S1 (p S2):

27 (0.64 g, 2.0 mmol), CuI (15 mg, 80 µmol), Pd(PPh₃)₄ (59 mg, 50 µmol), Et₃N/THF (10 mL, 1/1), (triisopropylsilyl)acetylene (0.44 g, 2.4 mmol), 55 °C, 15 h. Column chromatography on silica gel using pentane/ethyl acetate (3/1) afforded the pure product (0.71 g, 85%) as a yellow solid. ¹H NMR (300 MHz, CDCl₃) δ 7.44 (d, *J* = 1.6 Hz, 2H, C_{Ar}*H*), 7.40 (t, *J* = 1.6 Hz, 1H, C_{Ar}*H*), 1.95 (s, 2H, O*H*), 1.60 (s, 12H, CC*H*₃), 1.12–1.10 (m, 21H, C*H*(C*H*₃)₂). ¹³C NMR (75 MHz, CDCl₃) δ 134.6, 134.3, 124.1, 123.2, 105.1, 94.8, 92.2, 80.6, 65.6, 31.4, 18.6, 11.2. IR (neat, cm⁻¹) 3334 (O-H), 2941, 2863, 2358, 2145 (C=C), 1580, 1411, 1238, 1164, 949, 879, 677. GCMS *m*/*z* (%) 379 ([M⁺• - C₃H₇], 100), 351 (26), 337 (32), 309 (40). HRMS (EI) *m*/*z* calcd for C₂₇H₃₈O₂Si – C₃H₇ 379.2093, found 379.2101

 $(|\Delta| = 2.0 \text{ ppm}).$

((3,5-Diethynylphenyl)ethynyl)triisopropylsilane (29). A mixture of 28 (0.69 g, 1.6 mmol), NaOH (0.66 g, 16 mmol) and toluene (50 mL) was heated to reflux overnight before water was added. Aqueous layer was extracted with CH₂Cl₂ and the combined organic layers (toluene and CH₂Cl₂) were dried over Na₂SO₄. After filtration, the solvents were evaporated and the residue was purified by column chromatography on silica gel using heptane to afford the pure product (0.48 g, 96%) as a yellow oil. ¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, *J* = 1.5 Hz, 2H, CA₁H), 7.53 (t, *J* = 1.5 Hz, 1H, CA₁H), 3.10 (s, 2H, CCH), 1.12–1.10 (m, 21H, CH(CH₃)₂). ¹³C NMR (75 MHz, CDCl₃) δ 135.6, 135.1, 124.3, 122.7, 104.8, 92.7, 81.8, 78.4, 18.6, 11.2. IR (neat, cm⁻¹) 3300 (CC-H), 2957, 2941, 2923, 2889, 2862, 2158 (C=C), 2121 (C=C), 1780, 1580, 1459, 1414, 1384, 1364, 1294,

1237, 1072, 997, 966, 883, 677, 654, 627. GCMS m/z (%) 263 ([M^{+•} - C₃H₇], 100), 235 (40), 221 (52), 207 (58), 193 (68). HRMS (EI) m/z calcd for C₂₁H₂₆Si 306.1804, found 306.1804 ($|\Delta| = 0.1$ ppm).

4,4'-(5-((Triisopropylsilyl)ethynyl)-1,3-phenylene)bis(1-(3,5-di-*tert*-butylphenyl)-1*H*-1,2,3-triazole) (31). See the General procedure S2 (p S2): 29 (0.13 g, 0.42 mmol), 30 (0.23 g, 0.99 mmol), CuI (20 mg, 0.10 mmol), THF (10 mL), PMDTA (18 mg, 0.10 mmol), 40 °C, 18 h. Column chromatography on silica gel using pentane/ethyl acetate (95/5) afforded the pure product (0.31 g, 95%) as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 8.46 (t, *J* = 1.6 Hz, 1H, C_{Ar}H), 8.35 (s, 2H, C_{Ar}H), 8.06 (d, *J* = 1.7 Hz, 2H, C_{Ar}H), 7.61 (d, *J* = 1.7 Hz, 4H, C_{Ar}H), 7.54 (t, *J* = 1.7 Hz, 2H, C_{Ar}H), 1.41 (s, 36H, CCH₃), 1.19–1.16 (m, 21H, CH (CH₃)₂). ¹³C NMR (75 MHz, CDCl₃) δ 152.9, 147.1, 136.7, 131.2, 128.9, 124.9, 123.2, 122.9, 118.7, 115.4, 106.3, 91.7, 35.2, 31.4, 18.7, 11.3. IR (neat, cm⁻¹) 2963, 2863, 2155

(C=C), 1593, 1459, 1247, 1040, 879, 672. HRMS (ESI) m/z calcd for C₄₉H₆₈N₆Si + H⁺ 769.53530, found 569.53901 ($|\Delta|$ = 4.83 ppm).

4,4'-(5-Ethynyl-1,3-phenylene)bis(1-(3,5-di-tert-butylphenyl)-1H-1,2,3-triazole) (19). A mixture of 31 (0.13 g, 0.12

mmol), TBAF (12 µL, 1M in THF), THF (25 mL) and 5 drops of water was stirred at room temperature for 2.5 h before the solvent was evaporated. Precipitation of the residue from CH₂Cl₂ in MeOH afforded the pure product (0.10 g, 93%) as a yellowish solid. ¹H NMR (300 MHz, CDCl₃) δ 8.51 (t, *J* = 1.6 Hz, 1H, C_{Ar}*H*), 8.34 (s, 2H, C_{Ar}*H*), 8.08 (d, *J* = 1.7 Hz, 2H, C_{Ar}*H*), 7.61 (d, *J* = 1.7 Hz, 4H, C_{Ar}*H*), 7.54 (t, *J* = 1.7 Hz, 2H, C_{Ar}*H*), 3.17 (s, 1H, CC*H*), 1.41 (s, 36H, CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 152.9, 146.9,

136.7, 131.4, 128.9, 123.5, 123.3, 123.2, 118.7, 115.4, 83.0, 78.0, 35.2, 31.4. IR (neat, cm⁻¹) 3301 (CC-H), 2962, 2905, 2868, 2108 (C=C), 1593, 1481, 1456, 1363, 1247, 1231, 1056, 1037, 879, 851, 789, 705, 617. HRMS (ESI) m/z calcd for C₄₀H₄₈N₆ + H⁺ 613.40187, found 613.39996 ($|\Delta|$ = 3.11 ppm).

Synthesis of the ligands 3a–10a and 12a

1,4-Bis(4-(5-((triisopropylsilyl)ethynyl)pyridin-2-yl)-1H-1,2,3-triazol-1-yl)benzene (3a). See the General procedure S2

(p S2): 23 (0.11 g, 0.40 mmol), 24 (32 mg, 0.20 mmol), CuI (15 mg, 80 μ mol), THF (20 mL), PMDTA (21 mg, 0.12 mmol), room temperature, 14 h. Column chromatography on silica gel using CH₂Cl₂/ethyl acetate (97/3) afforded the pure product (0.13 g, 92%) as a yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (dd, J = 2.1, 0.8 Hz, 2H, C_{Ar}H), 8.68 (s, 2H, C_{Ar}H), 8.20 (dd, J = 8.2, 0.8 Hz, 2H, C_{Ar}H), 8.04 (s, 4H, C_{Ar}H), 7.88

(dd, J = 8.2 Hz, 2.1 Hz, 2H, C_{Ar}H), 1.18–1.12 (m, 42H, CH(CH₃)₂). ¹³C NMR (75 MHz, CDCl₃) δ 152.5, 148.9, 148.2, 139.8, 136.8, 121.6, 120.1, 120.0, 119.5, 103.5, 95.7, 18.6, 11.2. IR (neat, cm⁻¹) 3127, 3045, 2941, 2888, 2863, 2154 (C=C), 1592, 1523, 1473, 1406, 1363, 1255, 1236, 1025, 990, 881, 836, 699, 673. HRMS (ESI) *m/z* calcd for C₄₂H₅₄N₈Si₂ + H⁺ 727.40882, found 727.40675 ($|\Delta| = 2.85$ ppm).

1,4-Bis(1-(4-(5-((triisopropylsilyl)ethynyl)pyridin-2-yl)-1H-1,2,3-triazol-1-yl)phenyl)-1H-1,2,3-triazol-4-yl)benzene

(4a). See the General procedure S2 (p S2): 15 (24 mg, 0.19 mmol), 13 (0.17 g, 0.38 mmol), CuI (7 mg, 0.04 mmol), THF (8 mL), PMDTA (8 mg, 0.05 mmol), 40 $^{\circ}$ C, 46 h. After extraction with CHCl₃, the organic layers were combined and washed several times with demineralised water. Due to the

low solubility of the product, no further purification and characterisation could be carried out and the crude product (0.19 g,

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

98%), obtained after evaporation of the solvent as a yellowish solid, was used in further experiments. ESIMS analysis of a mixture, obtained after the reaction of a small fraction of the crude product with an excess of $(C^N)_2 Ir(\mu-Cl)_2 Ir(C^N)_2$ (see the General procedure S3 (p S13)), showed that the crude product contained also the monoclicked product and the unreacted 13.

6,6'-(1,1'-(4,4'-(4,4'-(2,5-Bis(dodecyloxy)-1,4-phenylene)bis(1H-1,2,3-triazole-4,1-diyl))bis(4,1-phenylene))bis

(1H-1,2,3-triazole-4,1-diy1))bis(3-((triisopropylsilyl)ethynyl)pyridine) (5a). See the General procedure S2 (p S2): 13 (80 mg, 0.18 mmol), 16 (43 mg, 86 µmol), CuI (3 mg, 0.02 mmol), THF (10 mL), PMDTA (3 mg, 0.02 mmol), 40 °C, 17 h. Size exclusion chromatography using CH₂Cl₂ and subsequent

crystallisation from CH₂Cl₂/MeOH afforded the pure product (55 mg, 47%) as a white crystalline solid. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (dd, *J* = 2.1 Hz, 0.7 Hz, 2H, C_{Ar}*H*), 8.61 (s, 2H, C_{Ar}*H*), 8.55 (s, 2H, C_{Ar}*H*), 8.17 (dd, *J* = 8.2, 0.7 Hz, 2H, C_{Ar}*H*), 8.06 (s, 2H, C_{Ar}*H*), 8.01–7.91 (m, 8H, AA'BB'), 7.85 (dd, *J* = 8.2 Hz, 2.1 Hz, 2H, C_{Ar}*H*), 4.26 (t, *J*= 6.6 Hz, 4H, OC*H*₂), 1.99 (tt, *J* = 6.8, 6.6 Hz, 4H, C*H*₂), 1.64–1.54 (m, 4H, C*H*₂) 1.50–1.40 (m, 4H, C*H*₂), 1.41–1.20 (m, 28H, C*H*₂), 1.19–1.08 (m, 42H, C*H*(C*H*₃)₂), 0.87–0.82 (m, 6H, CH₂C*H*₃). ¹³C NMR (75 MHz, CDCl₃) δ 152.5, 149.6, 148.9, 148.3, 144.1, 139.8, 137.0, 136.4, 121.4, 121.2, 120.7, 119.97, 119.96, 119.5, 118.9, 110.7, 103.5, 95.7, 69.0, 31.9, 29.8, 29.72, 29.69, 29.66, 29.63, 29.60, 29.4, 26.5, 22.7, 18.6, 14.1, 11.3. IR (neat, cm⁻¹) 2923, 2864, 2155 (C=C), 1736, 1594, 1525, 1237, 1023, 826, 700. MALDI-ToF MS *m*/*z* calcd for C₈₂H₁₁₂N₁₄O₂Si₂ + H⁺ 1381.86, found 1381.68.

(1*H*-1,2,3-triazole-4,1-diyl))bis(3-((triisopropylsilyl)ethynyl)pyridine) (6a). See the General procedure S2 (p S2): 17 (70 mg, 0.13 mmol), 13 (0.11 g, 0.25 mmol), CuI (15 mg, 76 μmol), THF (8 mL), PMDTA (15 mg, 89 μmol), 40 °C, 21 h. Column

chromatography on silica gel using CHCl₃/ethyl acetate (9/1 to 6/4) afforded the pure product (0.16 g, 88%) as a yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (dd, J = 2.0, 0.8 Hz, 2H, C_{Ar}H), 8.70 (s, 2H, C_{Ar}H), 8.35 (s, 2H, C_{Ar}H), 8.22 (dd, J = 8.2, 0.8 Hz, 2H, C_{Ar}H), 8.07–8.06 (m, 8H, AA'BB'), 8.00 (dd, J = 1.5, 0.6 Hz, 2H, C_{Ar}H), 7.89 (dd, J = 8.2, 2.1 Hz, 2H, C_{Ar}H), 7.89 (dd, J = 7.8, 1.6 Hz, 2H, C_{Ar}H), 7.81 (dd, J = 7.9, 0.6 Hz, 2H, C_{Ar}H), 2.16–2.06 (m, 4H, CCH₂), 1.29–0.95 (m, 78H, CH₂ + CH(CH₃)₂), 0.85–0.80 (m, 6H, CH₂CH₃), 0.74–0.64 (m, 4H, CH₂). ¹³C NMR (75 MHz, CDCl₃) δ 152.5, 151.9, 149.3, 148.9, 148.2, 141.2, 139.9, 137.0, 136.7, 128.8, 124.8, 121.64, 121.62, 120.4, 120.3, 120.2, 120.1, 119.6, 117.3, 103.4, 95.8, 55.6, 40.5, 31.8, 30.0, 29.58, 29.57, 29.56, 29.5, 29.33, 29.27, 23.9, 22.6, 18.6, 14.1, 11.2. IR (neat, cm⁻¹) 2921, 2856, 2156 (C=C), 1592, 1523, 1463, 1402, 1363, 1234, 1023, 993, 882, 837, 696, 674. MALDI-ToF MS *m*/*z* calcd for C₈₉H₁₁₆N₁₄Si₂ + H⁺ 1437.90, found 1437.69.

1,3,5-Tris(1-(4-(4-(5-((triisopropylsilyl)ethynyl)pyridin-2-yl)-1H-1,2,3-triazol-1-yl)phenyl)-1H-1,2,3-triazol-4-yl)phenyl (H-1,H)phenyl (H-1,H)phenyl)-1H-1,2,3-triazol-4-yl)phenyl (H-1,H)phenyl (H-

benzene (7a). See the General procedure S2 (p S2): 13 (90 mg, 0.20 mmol), 18 (10 mg, 63 μ mol), CuI (4 mg, 19 μ mol), THF (10 mL), PMDTA (3 mg, 19 μ mol), 40 °C, 17 h. Size exclusion chromatography (SEC) using CH₂Cl₂ afforded the product as a yellowish solid. Aggregation in solution disabled both qualitative and quantitative identification of the product by NMR. A small fraction of each collected SEC fraction was reacted with an excess of (C^N)₂Ir(μ -Cl)₂Ir(C^N)₂ (see the General procedure S3 (p S13)) and analysed by ESIMS. The SEC fractions, where the presence of the product was proven by the ESIMS of the corresponding complex 7b, were combined (43 mg, 51%) and used for further experiments.

2-(1-(4-(4-(3,5-Bis(1-(3,5-di-tert-butylphenyl)-1H-1,2,3-triazol-4-yl)phenyl)-1H-1,2,3-triazol-1-yl)phenyl)-1H-1,2,3-triazol-4-yl

triazol-4-yl)-5-((triisopropylsilyl)ethynyl)pyridine (8a). See the General procedure S2 (p S2): 13 (0.14 g, 0.32 mmol), 19 (0.20 g, 0.32 mmol), CuI (30 mg, 0.16 mmol), THF (10 mL), PMDTA (28 mg, 0.16 mmol), 40 °C, 17 h. Column chromatography on silica gel using CH₂Cl₂/ethyl acetate (95/5) afforded the pure product (0.18 g, 52%) as a yellowish solid. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (dd, J = 2.1, 0.8 Hz, 1H, C_{Ar}H), 8.69 (s, 1H, C_{Ar}H), 8.56 (t, J = 1.6 Hz, 1H, C_{Ar}H), 8.55 (s, 1H, C_{Ar}H), 8.53 (d, J = 1.6 Hz, 2H, C_{Ar}H), 8.50 (s, 2H, C_{Ar}H), 8.21 (dd, J = 8.2, 0.9 Hz, 1H, C_{Ar}H), 8.08–8.06 (m, 4H, AA 'BB'), 7.88 (dd, J = 8.2 Hz, 2.1 Hz, 1H, C_{Ar}H), 7.65 (d, J = 1.7 Hz, 4H, C_{Ar}H), 7.55 (t, J = 1.7 Hz, 2H, C_{Ar}H), 1.42 (s, 36H, CCH₃), 1.18–1.14 (m, 21H, CH (CH₃)₂). ¹³C NMR (75 MHz, CDCl₃) δ 152.9, 152.5, 148.8, 148.3, 148.0, 147.3,

139.8, 136.8, 136.6, 131.8, 131.1, 123.1, 122.8, 122.5, 121.5, 120.1, 119.9, 119.5, 118.9, 118.2, 115.3, 103.5, 95.6, 77.2, 35.2, 31.3, 29.6, 18.6, 11.2. IR (neat, cm⁻¹) 3137, 2959, 2864, 2155 (C=C), 1594, 1523, 1473, 1457, 1363, 1232, 1038, 987, 695. MALDI-ToF MS m/z calcd for C₆₄H₇₇N₁₃Si + H⁺ 1056.62, found 1056.35.

2-(1-(4-(3,5-Bis(1-(3,5-di-tert-butylphenyl)-1H-1,2,3-triazol-4-yl)phenyl)-1H-1,2,3-triazol-1-yl)phenyl)-1H-1,2,3-triazol-4-yl)phenyl)-1H-1,2,3-triazol-1-yl)phenyl)-1H-1,2,3-triazol-4-yl)phenyl -1H-1,2,3-triazol-4-yl)phenyl -1H-1,2,3-triazol-4-yl

triazol-4-yl)-5-ethynylpyridine (9a). A mixture of 8a (0.13 g, 0.12 mmol), TBAF (12 μ L, 1M in THF), THF (25 mL) and 5 drops of water was stirred at room temperature for 2.5 h before the solvent was evaporated. Precipitation of the residue from CH₂Cl₂ in MeOH afforded the pure product (0.10 g, 93%) as a yellowish solid. ¹H NMR (300 MHz, CDCl₃) δ 8.74 (dd, J = 2.1 Hz, 0.8 Hz, 1H, C_{Ar}H), 8.70 (s, 1H, C_{Ar}H), 8.58 (t, J = 1.6 Hz, 1H, C_{Ar}H), 8.57 (s, 1H, C_{Ar}H), 8.55 (d, J = 1.5 Hz, 2H, C_{Ar}H), 8.50 (s, 2H, C_{Ar}H), 8.25 (dd, J = 8.2 Hz, 0.9 Hz, 1H, C_{Ar}H), 8.11–8.07 (m, 4H, AA'BB'), 7.92 (dd, J = 8.2 Hz, 2.1 Hz, 1H, C_{Ar}H), 7.65 (d, J = 1.7 Hz, 4H, C_{Ar}H), 7.56 (t, J = 1.7 Hz, 2H, C_{Ar}H), 3.29 (s, 1H, CCH), 1.43 (s, 36H, CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 153.0, 152.6, 148.9, 148.8, 148.2, 147.3,

140.1, 137.0, 136.8, 136.7, 131.9, 131.2, 123.2, 122.9, 122.6, 121.69, 121.68, 120.3, 119.6, 119.0, 118.6, 118.2, 115.3, 81.2, 80.4, 35.3, 31.4. IR (neat, cm⁻¹) 3299 (CC-H), 3139, 2962, 2903, 2866, 2108 (C=C), 1592, 1522, 1475, 1360, 1246, 1035, 786, 701. MALDI-ToF MS m/z calcd for C₅₅H₅₇N₁₃ + H⁺ 900.49, found 900.32.

2-(1-(4-(4-(3,5-Bis(1-(3,5-di-tert-butylphenyl)-1H-1,2,3-triazol-4-yl)phenyl)-1H-1,2,3-triazol-1-yl)phenyl)-1H-1,2,3-triazol-4-yl)phenyl -1H-1,2,3-triazol-4-yl)phenyl -1H-1,2,3-triazol-4-yl)phenyl -1H-1,2,3-triazol-4-yl)phenyl -1H-1,2,3-triazol-4-yl)phenyl -1H-1,2,3-triazol-4-yl)phenyl -1H-1,2,3-triazol-4-yl)phenyl -1H-1,2,3-triazol-4-yl)phenyl -1H-1,2,3-triazol-4-yl

triazol-4-yl)-5-(1-(4-(4-(5-((triisopropylsilyl) ethynyl)pyridin-2-yl)-1H-1,2,3-triazol-1-yl) phenyl)-1H-1,2,3-triazol-4-yl)pyridine (10a). See the General procedure S2 (p S2): 9a (81 mg, 89 μ mol), 13 (44 mg, 99 μ mol), CuI (9 mg, 0.05 mmol), THF (10 mL), PMDTA (8 mg, 0.05 mmol), 40 °C, 17 h. Size exclusion chromatography (SEC) using CH₂Cl₂ afforded the product as a yellowish solid. Aggregation in solution disabled both qualitative and quantitative identification of the product by NMR. A small fraction of each

collected SEC fraction was reacted with an excess of $(C^N)_2 Ir(\mu-Cl)_2 Ir(C^N)_2$ (see the General procedure S3 (p S13)) and analysed by ESIMS. The SEC fractions, where the presence of the product was proven by the ESIMS of the corresponding complexes **10b** and **10c**, were combined (69 mg, 57%) and used for further experiments.

2-(1-(4-(3,5-Bis(1-(3,5-di-tert-butylphenyl)-1H-1,2,3-triazol-4-yl)phenyl)-1H-1,2,3-triazol-1-yl)phenyl)-1H-1,2,3-triazol-4-yl)phenyl)-1H-1,2,3-triazol-1-yl)phenyl)-1H-1,2,3-triazol-4-yl)phenyl -1H-1,2,3-triazol-4-yl)phenyl -1H-1,2,3-triazol-4-yl

triazol-4-yl)-5-(1-(4-(4-(5-((triisopropylsilyl) ethynyl)pyridin-2-yl)-1*H*-1,2,3-triazol-1-yl) cyclohexyl)-1*H*-1,2,3-triazol-4-yl)pyridine (*trans*-12a/cis-12a, 3/2). See the General procedure S2 (p S2): 9a (13 mg, 14 μ mol), 14 (7 mg, 0.02 mmol), CuI (3 mg, 0.02 mmol), 14 (7 mg, 0.02 mmol), CuI (3 mg, 0.02 mmol), THF (6 mL), PMDTA (3 mg, 0.02 mmol), 40 °C, 23 h. Column chromatography on silica gel using CH₂Cl₂/MeOH (99/1 to 97.5/2.5) afforded the pure product (14 mg, 72%) as a colourless solid film as a 3/2 mixture of *trans*- and *cis*-isomer (the ratio was obtained

from ¹H NMR).

Major isomer *trans*-12a. (Measured from a 3/2 mixture of *trans*-12a and *cis*-12a) ¹H NMR (400 MHz, CDCl₃) δ 9.11–9.07 (m, 1H, C_{Ar}H), 8.73 (s, 1H, C_{Ar}H), 8.65 (d, J = 1.4 Hz, 1H, C_{Ar}H), 8.61–8.49 (m, 6H, C_{Ar}H), 8.33 (d, J = 8.3 Hz, 1H, C_{Ar}H), 8.28 (dd, J = 8.4, 1.8 Hz, 1H, C_{Ar}H), 8.24 (s, 1H, C_{Ar}H), 8.14 (d, J = 8.2 Hz, 1H, C_{Ar}H), 8.10–8.04 (m, 4H, AA'BB '), 7.98 (s, 1H, C_{Ar}H), 7.85 (dd, J = 8.2, 2.0 Hz, 1H, C_{Ar}H), 7.65 (d, J = 1.4 Hz, 4H, C_{Ar}H), 7.55 (t, J = 1.5 Hz, 2H, C_{Ar}H), 4.77–4.63 (m, 1H, NCH), 2.64–1.54 (m, 8H, CHH), 1.42 (s, 36H, CCH₃), 1.18–1.11 (m, 21H, CH(CH₃)₂). ¹³C NMR (75 MHz, CDCl₃) δ 153.0, 152.3, 149.1, 149.0, 148.8, 148.2, 147.8, 147.3, 146.8, 144.4, 139.9, 136.9, 136.8, 136.7, 133.9, 131.9, 131.2, 126.2, 123.2, 122.9, 122.6, 121.64, 121.58, 120.54, 120.50, 119.9, 119.7, 119.3, 119.0, 118.30, 118.25, 115.3, 103.5, 95.4, 58.7, 58.5, 35.2, 31.71, 31.69, 31.4, 18.6, 11.3.

Minor isomer *cis*-12a. (Measured from a 3/2 mixture of *trans*-12a and *cis*-12a) ¹H NMR (400 MHz, CDCl₃) δ 9.11–9.07 (m, 1H, C_{Ar}H), 8.74 (s, 1H, C_{Ar}H), 8.63 (d, J = 2.0 Hz, 1H, C_{Ar}H), 8.61–8.49 (m, 6H, C_{Ar}H), 8.33 (d, J = 8.3 Hz, 1H, C_{Ar}H), 8.28 (dd, J = 8.4, 1.8 Hz, 1H, C_{Ar}H), 8.26 (s, 1H, C_{Ar}H), 8.13 (d, J = 8.2 Hz, 1H, C_{Ar}H), 8.10–8.04 (m, 4H, AA'BB

'), 7.97 (s, 1H, $C_{Ar}H$), 7.85 (dd, J = 8.2, 2.0 Hz, 1H, $C_{Ar}H$), 7.65 (d, J = 1.4 Hz, 4H, $C_{Ar}H$), 7.55 (t, J = 1.5 Hz, 2H, $C_{Ar}H$), 4.89–4.77 (m, 1H, NCH), 4.77–4.63 (m, 1H, NCH), 2.64–1.54 (m, 8H, CHH), 1.42 (s, 36H, CCH₃), 1.18–1.11 (m, 21H, CH(CH₃)₂). The high noise to signal ratio and overlap of some signals with the signals of the *trans*-isomer did not allow for a reliable description of the ¹³C NMR signals of the *cis*-isomer.

Mixture (3/2) of *trans*-12a and *cis*-12a. IR (neat, cm⁻¹) 2957, 2925, 2862, 2155 (C≡C), 1594, 1523, 1467, 1364, 1261, 1233, 1036, 989, 883, 837, 809, 699, 669. MALDI-ToF MS *m/z* calcd for C₇₉H₉₂N₂₀Si + H⁺ 1349.76, found 1349.47.

Synthesis of the iridium complexes 3b-8b, 10b, 3c-6c and 8c-12c

General procedure S3. A mixture of the ligand (3a–10a and 12a; 1 eq), $meso-\Delta,\Lambda-(C^N)_2 Ir(\mu-Cl)_2 Ir(C^N)_2$ (C^N = 2-phenylpyridine for the **b** series; C^N = 2-(1*H*-pyrazol-1-yl)pyridine for the **c** series; 1.1 eq (8a and 9a); 2.2 eq (3a–6a, 10a and 12a); 3.3 eq (7a)) and a 3/1 mixture of CHCl₃ and MeOH (5 mL/25 µmol of the ligand) was heated to 50 °C for 2–5 h (140 h in the case of 4b) before the solvents were evaporated. The residue was purified by flash column chromatography on silica gel using CHCl₃/MeOH (99/1) to remove the excess of $meso-\Delta,\Lambda-(C^N)_2 Ir(\mu-Cl)_2 Ir(C^N)_2$ and CHCl₃/MeOH (97/3 to 8/2) to afford the pure product. Since no reason or evidence for the formation of the diastereomerically pure or diastereomerically enriched binuclear products were found, it is presumed that all binuclear iridium complexes were obtained as a 1/1 mixture of $rel-\Delta,\Delta$ - and $meso-\Delta,\Lambda$ -diastereomer (3b–6b and 3c–6c) or as a 1/1 mixture of $rel-\Delta,\Delta$ - and $rel-\Delta,\Lambda$ -diastereomer (10b, 10c and 12c). Except for 3b and 3c, the ¹H and ¹³C NMR signals of the diastereomers of all binuclear products overlap within the resolution limits of both NMR techniques; in the case of 3b and 3c, some individual ¹H and ¹³C NMR signals are visible. The small or the lack of difference in the chemical shifts between the two diastereomers is most likely due to the long distance between the two chiral centres.

Compound 3b (*rel-* Δ , Δ -3b/*meso-* Δ , Λ -3b, 1/1). See the General procedure S3 (p S13). Column chromatography on silica

gel using ethyl acetate/MeOH (95/5 to 8/2) afforded the pure product (70 mg, 92%) as a yellow solid.

Mixture (1/1) of *rel*-Δ,Δ-3b and *meso*-Δ,Λ-3b. ¹H NMR (400 MHz, CDCl₃) δ 11.78 (s, 2H, C_{Ar}H), 11.78 (s, 2H, C_{Ar}H), 9.04 (d, *J* = 8.2 Hz, 2H, C_{Ar}H), 9.04 (d, *J* = 8.2 Hz, 2H, C_{Ar}H), 8.32 (s, 4H, C_{Ar}H), 8.31 (s, 4H, C_{Ar}H), 7.96 (bd, *J* = 8.8 Hz, 2H, C_{Ar}H), 7.96 (bd, *J* = 8.8 Hz, 2H, C_{Ar}H), 7.94 (bd, *J* = 9.1 Hz, 2H, C_{Ar}H), 7.94 (bd, *J* = 9.1 Hz, 2H, C_{Ar}H), 7.90 (bd, *J* = 9.1 Hz, 2H, C_{Ar}H), 7.94 (bd, *J* = 7.9 Hz, 2H, C_{Ar}H), 7.64 (bd, *J* = 7.9 Hz, 2H, C_{Ar}H), 7.52 (bd, *J* = 5.9 Hz, 2H, C_{Ar}H),

7.52 (bd, J = 5.9 Hz, 2H, C_{Ar}H), 7.07–6.95 (m, 16H, C_{Ar}H), 6.90 (bdd, J = 8.0, 7.9 Hz, 2H, C_{Ar}H), 6.90 (bdd, J = 8.0, 7.9 Hz, 2H, C_{Ar}H), 6.88 (bdd, J = 8.0, 7.9 Hz, 2H, C_{Ar}H), 6.88 (bdd, J = 8.0, 7.9 Hz, 2H, C_{Ar}H), 6.37 (bdd, J = 7.4, 2.2 Hz, 2H, C_{Ar}H), 6.37 (bdd, J = 7.4, 2.2 Hz, 2H, C_{Ar}H), 6.37 (bdd, J = 7.4, 2.2 Hz, 2H, C_{Ar}H), 6.37 (bdd, J = 7.4, 2.2 Hz, 2H, C_{Ar}H), 6.37 (bdd, J = 7.4, 2.2 Hz, 2H, C_{Ar}H), 6.29 (bd, J = 7.6 Hz, 2H, C_{Ar}H), 6.37 (bdd, J = 7.4, 2.2 Hz, 2H, C_{Ar}H), 114.0,

Compound 4b (*rel-* Δ , Δ -4b/*meso-* Δ , Λ -4b, 1/1). See the General procedure S3 (p S13). Column chromatography on silica

gel using CHCl₃/MeOH (93/7 to 87/13) afforded the pure product (22 mg, 43%) as a yellow solid.

rel- Δ , Δ -4**b**. (Measured from a 1/1 mixture of *rel*- Δ , Δ -4**b** and *meso*- Δ , Λ -4**b**) ¹H NMR (400 MHz, CDCl₃) δ 11.95 (s, 2H, C_{Ar}H), 9.20 (dd, J = 8.4, 0.5 Hz, 2H, C_{Ar}H), 8.42–8.36 (m, 4H, AA' of AA'XX'), 8.32 (s, 2H, C_{Ar}H), 8.02 (s, 4H, C_{Ar}H), 8.02–7.97 (m, 4H, XX' of AA'XX'), 8.00 (dd, J = 8.2, 1.9 Hz, 2H, C_{Ar}H), 7.96 (ddd, J = 8.6, 1.4, 0.7 Hz, 2H, C_{Ar}H),

7.94 (ddd, J = 8.8, 1.4, 0.6 Hz, 2H, C_{Ar}H), 7.81 (ddd, J = 8.6, 7.4, 1.6 Hz, 2H, C_{Ar}H), 7.81 (dd, J = 5.9, 1.8 Hz, 2H, C_{Ar}H), 7.79 (ddd, J = 8.9, 7.4, 1.6 Hz, 2H, C_{Ar}H), 7.69 (ddd, J = 8.2, 1.3, 0.5 Hz, 2H, C_{Ar}H), 7.69 (dd, J = 1.9, 0.7 Hz, 2H, C_{Ar}H), 7.67 (ddd, J = 8.0, 1.1, 0.5 Hz, 2H, C_{Ar}H), 7.66 (ddd, J = 5.9, 1.5, 0.7 Hz, 2H, C_{Ar}H), 7.08 (ddd, J = 7.4, 5.9, 1.4 Hz, 2H, C_{Ar}H), 7.05 (ddd, J = 7.3, 5.9, 1.4 Hz, 2H, C_{Ar}H), 7.04 (ddd, J = 7.8, 7.2, 1.2 Hz, 2H, C_{Ar}H), 7.03 (ddd, J = 7.9, 7.4, 1.2 Hz, 2H, C_{Ar}H), 6.92 (ddd, J = 7.6, 7.2, 1.3 Hz, 2H, C_{Ar}H), 6.92 (ddd, J = 7.6, 7.3, 1.5 Hz, 2H, C_{Ar}H), 6.34 (ddd, J = 7.6, 1.3, 0.5 Hz, 2H, C_{Ar}H), 1.08–1.01 (m, 42H, CH(CH₃)₂). ¹³C NMR (50 MHz, DMSO- d_{6} , 48 °C) δ (2C overlapped) 166.9, 166.2, 152.0, 150.0, 149.5, 148.6, 148.3, 148.0, 147.1, 145.4, 143.92, 143.86, 141.7, 138.9, 138.6, 137.2, 135.3, 131.3, 130.7, 130.0, 129.8, 129.3, 126.1, 125.9, 124.7, 124.4, 123.9, 123.7, 122.5, 121.8, 121.7, 121.2, 121.1, 119.8, 119.6, 101.6, 98.1, 18.2, 10.4

meso- Δ , Λ -4b. ¹H and ¹³C NMR data are identical to *rel-* Δ , Δ -4b within the resolution limits of both NMR techniques.

Mixture (1/1) of *rel*- Δ , Δ -4b and *meso*- Δ , Λ -4b. IR (neat, cm⁻¹) 3049, 2956, 2940, 2923, 2863, 2159 (C=C), 1605, 1583, 1524, 1477, 1422, 1266, 1227, 1163, 1064, 1032, 990, 881, 841, 757, 731, 696, 669. HRMS (ESI) *m/z* calcd for C₁₀₂H₉₆Ir₂N₁₈Si₂+ 2010.68157, found 2010.68102 ($|\Delta| = 0.27$ ppm).

Compound 5b (*rel*- Δ , Δ -5b/*meso*- Δ , Λ -5b, 1/1). See the General procedure S3 (p S13). Column chromatography on silica gel using CHCl₃/MeOH (9/1) afforded the pure

gel using CHCl₃/MeOH (9/1) afforded the pure product (29 mg, 97%) as a yellow solid.

rel- Δ , Δ -5**b**. (Measured from a 1/1 mixture of *rel*- Δ , Δ -5**b** and *meso*- Δ , Λ -5**b**) ¹H NMR (400 MHz, CDCl₃) δ 11.99 (s, 2H, C_{Ar}H), 9.25 (dd, J = 8.3, 0.5 Hz, 2H, C_{Ar}H), 8.60 (s, 2H, C_{Ar}H), 8.42–8.33 (m, 4H, AA' of AA'XX'), 8.09 (s, 2H, C_{Ar}H), 8.02 (dd, J = 8.3, 1.6 Hz, 2H, C_{Ar}H), 8.00–7.95 (m, 4H, XX' of AA'XX'), 7.94 (bd, J = 8.2 Hz, 2H, C_{Ar}H), 7.93

(bdd, J = 8.6, 1.1 Hz, 2H, C_{Ar}H), 7.83–7.75 (m, 6H, C_{Ar}H), 7.71–7.64 (m, 6H, C_{Ar}H), 7.56 (bd, J = 5.5 Hz, 2H, C_{Ar}H), 7.10–6.99 (m, 8H, C_{Ar}H), 6.92 (ddd, J = 7.8, 7.3, 1.3 Hz, 2H, C_{Ar}H), 6.90 (ddd, J = 7.9, 7.3, 1.6 Hz, 2H, C_{Ar}H), 6.34 (dd, J = 7.6, 0.9 Hz, 2H, C_{Ar}H), 4.25 (t, J = 7.0 Hz, 4H, OCH₂), 1.97 (tt, J = 7.0, 7.0 Hz, 4H, CH₂), 1.57–1.47 (m, 4H, CH₂), 1.45–1.35 (m, 4H, CH₂), 1.34–1.16 (m, 28H, CH₂), 1.07–0.99 (m, 42H, CH(CH₃)₂), 0.88–0.79 (m, 6H, CH₂CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 167.6, 152.5, 149.6, 149.4, 149.3, 149.1, 148.5, 148.4, 145.7, 144.2, 143.56, 143.55, 141.8, 138.1, 138.0, 137.7, 135.6, 131.9, 131.6, 130.8, 130.1, 127.3, 124.7, 124.59, 124.58, 124.4, 123.3, 123.0, 122.9, 122.3, 121.8, 121.3, 120.7, 119.6, 119.5, 118.9, 110.9, 101.1, 99.8, 69.0, 31.9, 29.63, 29.59, 29.56, 29.5, 29.4, 29.29, 29.26, 26.0, 22.6, 18.5, 14.1, 11.1

meso- Δ , Λ -**5b**. ¹H and ¹³C NMR data are identical to *rel-* Δ , Δ -**5b** within the resolution limits of both NMR techniques.

Mixture (1/1) of *rel*- Δ , Δ -5b and *meso*- Δ , Λ -5b. IR (neat, cm⁻¹) 3048, 2922, 2852, 2160 (C=C), 1720, 1606, 1582, 1524, 1478, 1420, 1267, 1247, 1228, 1204, 1064, 1030, 879, 840, 760, 731, 695, 669. HRMS (ESI) *m/z* calcd for C₁₂₆H₁₄₄Ir₂N₁₈O₂Si₂+ 2379.04700, found 2379.04833 ($|\Delta| = 0.56$ ppm).

Compound 6b (*rel-* Δ , Δ -6b/*meso-* Δ , Λ -6b, 1/1). See the General procedure S3 (p S13). Column chromatography on silica

gel using CHCl₃/MeOH (95/5 to 9/1) afforded the pure product (52 mg, >99%) as a yellow solid.

rel- Δ , Δ -**6b**. (Measured from a 1/1 mixture of *rel*- Δ , Δ -**6b** and *meso*- Δ , Λ -**6b**) ¹H NMR (400 MHz, CDCl₃) δ 11.89 (s, 2H, C_{Ar}H), 9.19 (d, J = 8.1 Hz, 2H, C_{Ar}H), 8.43–8.35 (m, 4H, AA' of AA'XX'), 8.32 (s, 2H, C_{Ar}H), 8.02–7.98 (m, 4H, XX' of AA'XX'), 8.01 (dd, J = 8.3,

1.9 Hz, 2H, $C_{Ar}H$), 7.97 (dd, J = 1.5, 0.6 Hz, 2H, $C_{Ar}H$), 7.96–7.91 (m, 4H, $C_{Ar}H$), 7.85 (dd, J = 7.8, 1.5 Hz, 2H, $C_{Ar}H$), 7.82–7.77 (m, 4H, $C_{Ar}H$), 7.78 (ddd, J = 8.3, 7.4, 1.5 Hz, 2H, $C_{Ar}H$), 7.78 (dd, J = 7.9, 0.6 Hz, 2H, $C_{Ar}H$), 7.70–7.65 (m, 4H, $C_{Ar}H$), 7.69 (dd, J = 1.9, 0.6 Hz, 2H, $C_{Ar}H$), 7.55 (ddd, J = 5.9, 1.5, 0.7 Hz, 2H, $C_{Ar}H$), 7.07 (ddd, J = 7.3, 5.9, 1.5 Hz, 2H, $C_{Ar}H$), 7.06–7.02 (m, 2H, $C_{Ar}H$), 7.02 (ddd, J = 7.8, 7.4, 1.4 Hz, 2H, $C_{Ar}H$), 7.02 (ddd, J = 7.9, 7.3, 1.4 Hz, 2H, $C_{Ar}H$), 6.92 (ddd, J = 7.5, 7.5, 1.4 Hz, 2H, $C_{Ar}H$), 6.90 (ddd, J = 7.5, 7.4, 1.4 Hz, 2H, $C_{Ar}H$), 6.34 (ddd, J = 7.7, 1.2, 0.5 Hz, 2H, $C_{Ar}H$), 6.34 (ddd, J = 7.7, 1.3, 0.5 Hz, 2H, $C_{Ar}H$), 2.15–2.03 (m, 4H, CCH₂), 1.36–0.95 (m, 78H, CH₂ + CH (CH₃)₂), 0.84–0.77 (m, 6H, CH₂CH₃), 0.73–0.60 (m, 4H, CH₂). ¹³C NMR (75 MHz, CDCl₃) δ 168.3, 167.6, 152.5, 151.9, 149.4, 149.30, 149.27, 149.0, 148.5, 148.3, 145.6, 143.6, 141.8, 141.1, 138.2, 138.0, 137.5, 135.7, 131.9, 131.6, 130.8, 130.1, 128.7, 127.2, 124.8, 124.7, 124.5, 124.40, 124.36, 123.3, 123.02, 122.96, 122.9, 122.4, 121.9, 121.5, 120.3, 120.2, 119.64, 119.55, 117.4, 101.1, 99.9, 55.5, 40.5, 31.8, 30.0, 29.6, 29.52, 29.50, 29.47, 29.3, 29.2, 23.9, 22.6, 18.5, 14.0, 11.1.

meso- Δ , Λ -6b. ¹H and ¹³C NMR data are identical to *rel-* Δ , Δ -6b within the resolution limits of both NMR techniques.

Mixture (1/1) of *rel*- Δ , Δ -6b and *meso*- Δ , Λ -6b. IR (neat, cm⁻¹) 3060, 3046, 2920, 2851, 2160 (C=C), 1605, 1581, 1523, 1476, 1269, 1226, 1064, 1031, 844, 758, 730. HRMS (ESI) *m/z* calcd for C₁₃₃H₁₄₈Ir₂N₁₈Si₂+ 2435.08847, found 2435.09522 ($|\Delta| = 2.77$ ppm).

Compound 7b. See the General procedure S3 (p S13). Column chromatography on silica gel using CHCl₃/MeOH (9/1

to 8/2) afforded the product (10 mg, 48%) as a yellow solid. Significant broadening of the ¹H and ¹³C NMR signals, most likely due to the aggregation, disabled the interpretation of the ¹H and ¹³C NMR spectra. Presuming that during the purification no diastereomerical enrichment occured, the product was obtained as a 1/1/1/1 mixture of *rel*- Δ , Δ , Δ -7**b**, *rel*- Δ , Δ , Λ -7**b**, *and rel*- Δ , Λ , Λ -7**b** diastereomerical.

Mixture (1/1/1/1) of *rel*- Δ , Δ , Δ -7b, *rel*- Δ , Δ , Λ -7b, *rel*- Δ , Λ , Δ -7b and *rel*- Δ , Λ , Λ -7b. IR (neat, cm⁻¹) 3063, 2952, 2921, 2853, 2160 (C=C), 1730, 1607, 1583, 1520, 1463, 1377, 1230, 1163, 1068, 1040, 847, 760, 736, 698, 667. HRMS (ESI) *m/z* calcd for C₁₅₀H₁₄₁¹⁹¹Ir₂¹⁹³IrN₂₇Si₃+ 2979.00121, found 2979.00055 ($|\Delta| = 0.22$ ppm).

Compound 8b. See the General procedure S3 (p S13). Column chromatography on silica gel using CHCl₃/MeOH (9/1)

afforded the pure product (92 mg, >99%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 11.88 (s, 1H, C_{Ar}H), 9.12 (d, J = 7.9 Hz, 1H, C_{Ar}H), 8.67 (s, 1H, C_{Ar}H), 8.59 (s, 2H, C_{Ar}H), 8.56 (t, J = 1.5 Hz, 1H, C_{Ar}H), 8.53 (d, J = 1.4 Hz, 2H, C_{Ar}H), 8.38–8.32 (m, 2H, AA' of AA'XX'), 8.03–7.98 (m, 2H, XX' of AA'XX'), 7.95 (bd, J = 8.1 Hz, 1H, C_{Ar}H), 7.94 (bd, J = 8.0 Hz, 1H, C_{Ar}H), 7.90 (bd, J = 8.5 Hz, 1H, C_{Ar}H), 7.87 (bd, J = 5.5 Hz, 1H, C_{Ar}H), 7.82 (ddd, J = 8.3, 7.7, 1.6 Hz, 1H, C_{Ar}H), 7.78 (ddd, J = 8.2, 7.5, 1.6 Hz, 1H, C_{Ar}H), 7.71–7.65 (m, 3H, C_{Ar}H), 7.67 (d, J = 1.6 Hz, 4H, C_{Ar}H), 7.56–7.53 (m, 1H, C_{Ar}H), 7.10–7.05 (m, 1H, C_{Ar}H), 7.04 (ddd, J = 8.5 Hz, 1H, C_{Ar}H), 7.05 (m, 1H, C_{Ar}H), 7.04 (ddd, J = 8.5 Hz, 1H, C_{Ar}H)

7.7, 7.2, 1.2 Hz, 1H, C_{Ar}*H*), 7.02 (ddd, *J* = 7.9, 7.2, 1.2 Hz, 1H, C_{Ar}*H*), 6.92 (ddd, *J* = 7.8, 7.2, 1.6 Hz, 1H, C_{Ar}*H*), 6.92 (ddd, *J* = 7.8, 7.1, 1.4 Hz, 1H, C_{Ar}*H*), 6.35 (ddd, *J* = 7.8, 1.4, 0.5 Hz, 1H, C_{Ar}*H*), 6.34 (ddd, *J* = 7.8, 1.1, 0.5 Hz, 1H, C_{Ar}*H*), 1.43 (s, 36H, CC*H*₃), 1.06–1.01 (m, 21H, C*H*(C*H*₃)₂). ¹³C NMR (75 MHz, CDCl₃) δ (1C overlapped) 168.2, 167.4, 152.8, 152.6, 149.9, 149.1, 149.0, 148.5, 148.0, 147.9, 147.3, 145.7, 143.8, 143.6, 141.1, 138.1, 137.9, 137.1, 136.7, 135.4, 131.9, 131.8, 131.6, 131.2, 130.6, 130.0, 126.5, 124.5, 124.3, 123.7, 123.6, 123.0, 122.9, 122.8, 122.6, 122.5, 122.3, 121.7, 121.2, 119.6, 119.5, 119.3, 119.0, 115.1, 101.1, 99.4, 35.2, 31.4, 18.5, 11.0. IR (neat, cm⁻¹) 3059, 3048, 2955, 2924, 2864, 2162 (C=C), 1719, 1607, 1522, 1477, 1361, 1317, 1229, 1061, 1037, 878, 847, 789, 757, 732, 696, 669. HRMS (ESI) *m/z* calcd for C₈₆H₉₃IrN₁₅Si⁺ 1556.71368, found 1556.72109 ($|\Delta|$ = 4.76 ppm).

Compound 10b (*rel-* Δ , Δ -10b/*rel-* Δ , Λ -10b, 1/1). See the General procedure S3 (p S13). Column chromatography on

silica gel using CHCl₃/MeOH (96/4 to 85/15) afforded the product (16 mg, 45%) as a yellow solid. Significant broadening of the ¹H and ¹³C NMR signals, most likely due to the aggregation, disabled the interpretation of the ¹H and ¹³C NMR spectra.

Mixture (1/1) of *rel*-Δ,Δ-10b and *rel*-Δ,Λ-10b. IR (neat, cm⁻¹) 3053, 2958, 2922, 2865, 1713, 1607, 1523, 1480, 1423, 1258, 1230, 1097, 1063, 1031, 845, 804, 757, 732, 705, 669, 612. HRMS (ESI) *m/z*

calcd for $C_{123}H_{118}Ir_2N_{24}Si^+$ 2340.89523, found 2340.89408 ($|\Delta| = 0.49$ ppm).

Compound 3c (*rel-* Δ , Δ -3c/*meso-* Δ , Λ -3c, 1/1). See the General procedure S3 (p S13). Column chromatography on silica

gel using CHCl₃/MeOH (95/5 to 9/1) afforded the pure product (60 mg, 92%) as a yellow solid.

Mixture (1/1) of *rel*-Δ,Δ-3c and *meso*-Δ,Λ-3c. ¹H NMR (400 MHz, CDCl₃) δ 11.84 (s, 2H, C_{Ar}H), 11.84 (s, 2H, C_{Ar}H), 9.04 (d, *J* = 8.2 Hz, 2H, C_{Ar}H), 9.04 (d, *J* = 8.2 Hz, 2H, C_{Ar}H), 8.35 (s, 4H, C_{Ar}H), 8.35 (s, 4H, C_{Ar}H), 8.12 (dd, *J* = 3.0, 0.7 Hz, 2H, C_{Ar}H), 8.11 (dd, *J* = 3.0, 0.8 Hz, 2H, C_{Ar}H), 8.11 (dd, *J* = 3.0, 0.6 Hz, 2H, C_{Ar}H), 8.10 (dd, *J* = 3.0, 0.6 Hz, 2H, C_{Ar}H), 7.97 (dd, *J* = 8.2, 1.9 Hz, 2H, C_{Ar}H), 7.97 (dd, *J* = 8.2, 1.9 Hz, 2H, C_{Ar}H), 7.86 (dd, *J* = 1.9, 0.6

Hz, 2H, C_{Ar}*H*), 7.86 (dd, *J* = 1.9, 0.6 Hz, 2H, C_{Ar}*H*), 7.28 (ddd, *J* = 8.0, 1.2, 0.5 Hz, 2H, C_{Ar}*H*), 7.28 (ddd, *J* = 8.0, 1.1, 0.4 Hz, 2H, C_{Ar}*H*), 7.26 (ddd, *J* = 8.2, 1.3, 0.5 Hz, 2H, C_{Ar}*H*), 7.26 (ddd, *J* = 8.1, 1.2, 0.5 Hz, 2H, C_{Ar}*H*), 7.09 (dd, *J* = 2.3, 0.6 Hz, 2H, C_{Ar}*H*), 7.08 (dd, *J* = 2.3, 0.6 Hz, 2H, C_{Ar}*H*), 7.03 (ddd, *J* = 8.0, 7.3, 1.3 Hz, 2H, C_{Ar}*H*), 7.03 (ddd, *J* = 7.9, 7.4, 1.2 Hz, 2H, C_{Ar}*H*), 7.01 (ddd, *J* = 8.1, 7.4, 1.3 Hz, 2H, C_{Ar}*H*), 7.01 (ddd, *J* = 8.0, 7.3, 1.3 Hz, 2H, C_{Ar}*H*), 6.89 (dd, *J* = 2.3, 0.6 Hz, 2H, C_{Ar}*H*), 6.89 (dd, *J* = 2.3, 0.6 Hz, 2H, C_{Ar}*H*), 6.85 (ddd, *J* = 7.5, 7.4, 1.2 Hz, 2H, C_{Ar}*H*), 6.89 (dd, *J* = 2.3, 0.6 Hz, 2H, C_{Ar}*H*), 6.85 (ddd, *J* = 7.5, 7.4, 1.2 Hz, 2H, C_{Ar}*H*), 6.85 (ddd, *J* = 7.5, 7.4, 1.2 Hz, 2H, C_{Ar}*H*), 6.85 (ddd, *J* = 7.5, 7.4, 1.2 Hz, 2H, C_{Ar}*H*), 6.85 (ddd, *J* = 7.5, 7.4, 1.2 Hz, 2H, C_{Ar}*H*), 6.57 (dd, *J* = 2.9, 2.3 Hz, 2H, C_{Ar}*H*), 6.56 (dd, *J* = 2.9, 2.3 Hz, 2H, C_{Ar}*H*), 6.53 (ddd, *J* = 7.5, 7.5, 1.2 Hz, 2H, C_{Ar}*H*), 6.52 (dd, *J* = 2.9, 2.3 Hz, 2H, C_{Ar}*H*), 6.38 (ddd, *J* = 7.5, 1.2, 0.6 Hz, 2H, C_{Ar}*H*), 6.38 (ddd, *J* = 7.5, 1.2, 0.6 Hz, 2H, C_{Ar}*H*), 6.39 (ddd, *J* = 7.6, 1.2, 0.6 Hz, 2H, C_{Ar}*H*), 1.06–1.00 (m, 42H, CH(CH₃)₂), 1.06–1.00 (m, 42H, CH(CH₃)₂), 1.30–1.00 (m, 42H, CH(CH₃)₂), 1.31.1, 126.9, 126.8, 126.7, 126.6, 126.44, 126.42, 124.0, 123.43, 123.36, 122.5, 121.8, 111.5, 111.3, 108.2, 107.9, 101.0, 99.7, 18.4, 10.9. IR (neat, cm⁻¹) 3058, 2956, 2941, 2921, 2865, 2160 (C=C), 2040, 1714, 1607, 1579, 1520, 1481, 1467, 1411, 1336, 1274, 1263, 1230, 1058, 1033, 883, 845, 748, 730, 701, 667, 656. HRMS (ESI) *m*/z calcd for C₇₈H₈₂Ir₂N₁₆Si₂+ 1680.56587, found 1680.56964 (|\Delta| = 2.25 ppm).

Compound 4c (*rel-* Δ , Δ -4c/*meso-* Δ , Λ -4c, 1/1). See the General procedure S3 (p S13). Column chromatography on silica

gel using CHCl₃/MeOH (96/4 to 9/1) afforded the pure product (17 mg, 43%) as a yellow solid.

rel- Δ , Δ -4c. (Measured from a 1/1 mixture of *rel*- Δ , Δ -4c and *meso*- Δ , Λ -4c) ¹H NMR (400 MHz, CDCl₃) δ 11.95 (s, 2H, C_{Ar}H), 9.19 (d, *J* = 8.1 Hz, 2H, C_{Ar}H), 8.39–8.34 (m, 6H, C_{Ar}H), 8.15 (dd, *J* = 3.0, 0.5 Hz, 2H, C_{Ar}H), 8.14 (dd, *J* = 2.9, 0.5 Hz, 2H, C_{Ar}H), 8.00–7.95 (m, 10H, C_{Ar}H), 7.86 (dd, *J* = 1.9, 0.7 Hz, 2H, C_{Ar}H), 7.30–7.27 (m, 4H, C_{Ar}H), 7.13 (dd, *J* =

2.3, 0.5 Hz, 2H, $C_{Ar}H$), 7.06–7.00 (m, 4H, $C_{Ar}H$), 6.95 (dd, J = 2.4, 0.4 Hz, 2H, $C_{Ar}H$), 6.87 (ddd, J = 7.5, 7.5, 1.1 Hz, 2H, $C_{Ar}H$), 6.84 (ddd, J = 7.5, 7.5, 1.1 Hz, 2H, $C_{Ar}H$), 6.84 (ddd, J = 7.5, 7.5, 1.1 Hz, 2H, $C_{Ar}H$), 6.59 (dd, J = 2.8, 2.3 Hz, 2H, $C_{Ar}H$), 6.57 (dd, J = 2.9, 2.4 Hz, 2H, $C_{Ar}H$), 6.35 (ddd, J = 7.4, 1.1, 0.6 Hz, 2H, $C_{Ar}H$), 6.33 (ddd, J = 7.6, 1.2, 0.5 Hz, 2H, $C_{Ar}H$), 1.07–1.02 (m, 42H, CH (CH₃)₂). ¹³C NMR (75 MHz, CDCl₃/CD₃OD (3/1)) δ 153.0, 149.3, 147.90, 147.85, 142.50, 142.46, 141.1, 138.5, 137.6, 137.4, 135.2, 133.1, 132.5, 130.0, 129.5, 127.0, 126.8, 126.5, 126.3, 125.9, 125.7, 123.9, 123.4, 122.8, 122.7, 122.2, 121.6, 121.0, 118.4, 111.4, 110.9, 108.0, 107.8, 100.3, 100.0, 17.8, 106.

meso- Δ , Λ -4c. ¹H and ¹³C NMR data are identical to *rel-* Δ , Δ -4c within the resolution limits of both NMR techniques.

Mixture (1/1) of *rel*- Δ , Δ -4b and *meso*- Δ , Λ -4b. IR (neat, cm⁻¹) 3057, 2959, 2939, 2924, 2862, 2160 (C=C), 1524, 1480, 1467, 1412, 1264, 1064, 1034, 1017, 801, 747, 697, 669. HRMS (ESI) *m/z* calcd for C₉₄H₉₂Ir₂N₂₂Si₂+ 1970.66723, found 1970.66850 ($|\Delta| = 0.65$ ppm).

Compound 5c (*rel*- Δ , Δ -5c/*meso*- Δ , Λ -5c, 1/1). See the General procedure S3 (p S13). Column chromatography on silica

ocedure \$3 (p \$13). Column chromatography on silica gel using CHCl₃/MeOH (85/15) afforded the pure product (23 mg, >99%) as a yellow solid.

rel- Δ , Δ -5c. (Measured from a 1/1 mixture of *rel*- Δ , Δ -5c and *meso*- Δ , Λ -5c) ¹H NMR (400 MHz, CDCl₃) δ 11.81 (s, 2H, C_{Ar}H), 9.20 (dd, J = 8.4, 0.5 Hz, 2H, C_{Ar}H), 8.61 (s, 2H, C_{Ar}H), 8.40–8.34 (m, 4H, AA' of AA'XX'), 8.14–8.11 (m, 4H, C_{Ar}H), 8.09 (s, 2H, C_{Ar}H), 8.03 (dd, J = 8.3, 1.8 Hz, 2H, C_{Ar}H), 8.01–7.95 (m, 4H, XX' of AA'XX'), 7.87

(dd, J = 1.9, 0.6 Hz, 2H, C_{Ar}H), 7.28 (ddd, J = 7.9, 1.4, 0.4 Hz, 2H, C_{Ar}H), 7.28 (ddd, J = 8.1, 1.2, 0.5 Hz, 2H, C_{Ar}H), 7.13 (dd, J = 2.3, 0.5 Hz, 2H, C_{Ar}H), 7.05 (ddd, J = 8.1, 7.5, 1.4 Hz, 2H, C_{Ar}H), 7.04 (ddd, J = 7.9, 7.4, 1.3 Hz, 2H, C_{Ar}H), 6.95 (dd, J = 2.4, 0.5 Hz, 2H, C_{Ar}H), 6.88 (ddd, J = 7.5, 7.5, 1.0 Hz, 2H, C_{Ar}H), 6.86 (ddd, J = 7.5, 7.4, 1.0 Hz, 2H, C_{Ar}H), 6.60 (dd, J = 2.7, 2.4 Hz, 2H, C_{Ar}H), 6.58 (dd, J = 2.8, 2.4 Hz, 2H, C_{Ar}H), 6.36 (ddd, J = 7.4, 1.2, 0.5 Hz, 2H, C_{Ar}H), 6.35 (ddd, J = 7.5, 1.3, 0.6 Hz, 2H, C_{Ar}H), 4.26 (t, J = 6.9 Hz, 4H, OCH₂), 1.98 (tt, J = 7.1, 7.0 Hz, 4H, CH₂), 1.57–1.47 (m, 4H, CH₂), 1.46–1.35 (m, 4H, CH₂), 1.35–1.17 (m, 28H, CH₂), 1.08–1.00 (m, 42H, CH(CH₃)₂), 0.87–0.81 (m, 6H, CH₂CH₃). ¹³C NMR (75 MHz, CDCl₃) δ 152.7, 149.8, 149.6, 148.9, 144.2, 142.7, 142.0, 138.9, 137.9, 137.7, 135.6, 133.6, 133.1, 131.0, 127.2, 127.0, 126.9, 126.7, 126.5, 126.3, 124.3, 123.6, 123.0, 122.6, 121.8, 121.4, 120.8, 118.9, 111.6, 111.2, 110.91, 110.89, 108.3, 108.1, 101.0, 99.8, 69.0, 31.9, 29.63, 29.58, 29.56, 29.5, 29.4, 29.28, 29.26, 26.0, 22.6, 18.5, 14.1, 11.1

meso- Δ , Λ -5c. ¹H and ¹³C NMR data are identical to *rel-* Δ , Δ -5c within the resolution limits of both NMR techniques.

Mixture (1/1) of *rel*- Δ , Δ -5b and *meso*- Δ , Λ -5b. IR (neat, cm⁻¹) 3055, 2922, 2857, 2160 (C=C), 1607, 1578, 1523, 1481, 1464, 1408, 1337, 1246, 1201, 1061, 1033, 881, 844, 750, 696, 670. HRMS (ESI) *m/z* calcd for C₁₁₈H₁₄₀Ir₂N₂₂O₂Si₂+ 2335.02799, found 2335.04193 ($|\Delta|$ = 5.97 ppm).

Compound 6c (*rel-* Δ , Δ -6c/*meso-* Δ , Λ -6c, 1/1). See the General procedure S3 (p S13). Column chromatography on silica

gel using CHCl₃/MeOH (96/4 to 92/8) afforded the pure product (43 mg, 99%) as a yellow solid.

rel- Δ , Δ -6c. (Measured from a 1/1 mixture of *rel*- Δ , Δ -6c and *meso*- Δ , Λ -6c) ¹H NMR (400 MHz, CDCl₃) δ 12.01 (s, 2H, C_{Ar}H), 9.23 (dd, J = 8.2, 0.4 Hz, 2H, C_{Ar}H), 8.45–8.39 (m, 4H, AA' of AA'XX'), 8.31 (s, 2H, C_{Ar}H), 8.13 (dd, J = 3.0, 0.6 Hz, 2H, C_{Ar}H), 8.13 (dd, J = 3.0,

0.6 Hz, 2H, C_{Ar}*H*), 8.03 (dd, *J* = 8.1, 2.0 Hz, 2H, C_{Ar}*H*), 8.03–7.99 (m, 4H, XX' of AA'XX'), 7.98 (dd, *J* = 2.1, 0.5 Hz, 2H, C_{Ar}*H*), 7.88 (dd, *J* = 1.9, 0.7 Hz, 2H, C_{Ar}*H*), 7.87 (dd, *J* = 7.6, 1.8 Hz, 2H, C_{Ar}*H*), 7.80 (dd, *J* = 7.6, 0.6 Hz, 2H, C_{Ar}*H*), 7.31–7.27 (m, 4H, C_{Ar}*H*), 7.13 (dd, *J* = 2.4, 0.6 Hz, 2H, C_{Ar}*H*), 7.05 (ddd, *J* = 7.9, 7.4, 1.3 Hz, 2H, C_{Ar}*H*), 7.04 (ddd, *J* = 7.9, 7.4, 1.3 Hz, 2H, C_{Ar}*H*), 6.94 (dd, *J* = 2.3, 0.6 Hz, 2H, C_{Ar}*H*), 6.88 (ddd, *J* = 7.5, 7.5, 1.2 Hz, 2H, C_{Ar}*H*), 6.86 (ddd, *J* = 7.5, 7.5, 1.2 Hz, 2H, C_{Ar}*H*), 6.60 (dd, *J* = 2.8, 2.3 Hz, 2H, C_{Ar}*H*), 6.58 (dd, *J* = 2.9, 2.3 Hz, 2H, C_{Ar}*H*), 6.36 (dd, *J* = 7.4, 1.3 Hz, 2H, C_{Ar}*H*), 6.35 (dd, *J* = 7.5, 1.3 Hz, 2H, C_{Ar}*H*), 2.15–2.04 (m, 4H, CC*H*₂), 1.33–0.92 (m, 78H, C*H*₂ + C*H* (C*H*₃)₂), 0.85–0.77 (m, 6H, CH₂C*H*₃), 0.72–0.61 (m, 4H, C*H*₂). ¹³C NMR (75 MHz, CDCl₃) δ 152.7, 151.9, 149.8, 149.2, 148.9, 142.7, 141.9, 141.1, 138.9, 137.9, 137.5, 135.6, 133.6, 133.1, 130.9, 128.8, 127.1, 127.0, 126.92, 126.85, 126.6, 126.2, 124.82, 124.81, 124.3, 123.6, 123.0, 122.6, 121.8, 121.4, 120.3, 120.2, 117.4, 111.6, 111.2, 108.3, 108.0, 101.0, 99.9, 55.5, 40.4, 31.8, 30.0, 29.6, 29.51, 29.49, 29.46, 29.3, 29.2, 23.9, 22.6, 18.5, 14.0, 11.0.

meso- Δ , Λ -6c. ¹H and ¹³C NMR data are identical to *rel-* Δ , Δ -6c within the resolution limits of both NMR techniques.

Mixture (1/1) of *rel*- Δ , Δ -6c and *meso*- Δ , Λ -6c. IR (neat, cm⁻¹) 3058, 2923, 2852, 2160 (C=C), 2043, 1610, 1582, 1521, 1481, 1462, 1408, 1337, 1265, 1225, 1061, 1034, 994, 884, 840, 746, 733, 699, 670, 657. HRMS (ESI) *m/z* calcd for C₁₂₅H₁₄₄Ir₂N₂₂Si₂+ 2391.06946, found 2391.07614 ($|\Delta|$ = 2.79 ppm).

Compound 8c. See the General procedure S3 (p S13). Column chromatography on silica gel using CHCl₃/MeOH (99/1

and 95/5) and subsequent crystallisation from CH₂Cl₂/MeCN afforded the pure product (16 mg, 50%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 11.46 (s, 1H, C_{Ar}H), 8.92 (s, 1H, C_{Ar}H), 8.82–8.70 (m, 1H, C_{Ar}H), 8.75 (s, 2H, C_{Ar}H), 8.50 (d, J = 1.4 Hz, 2H, C_{Ar}H), 8.46 (t, J = 1.6Hz, 1H, C_{Ar}H), 8.29–8.23 (m, 2H, AA' of AA'XX'), 8.16 (dd, J = 2.7, 0.4Hz, 1H, C_{Ar}H), 8.09 (dd, J = 2.8, 0.6 Hz, 1H, C_{Ar}H), 8.03–7.98 (m, 2H, XX' of AA'XX'), 7.75 (dd, J = 1.9, 0.6 Hz, 1H, C_{Ar}H), 7.72–7.67 (m, 1H, C_{Ar}H), 7.70 (d, J = 1.7 Hz, 4H, C_{Ar}H), 7.56–7.52 (m, 1H, C_{Ar}H), 7.54 (t, J = 1.7 Hz, 2H, C_{Ar}H), 7.32 (dd, J = 8.1, 0.9 Hz, 1H, C_{Ar}H), 7.02 (ddd, J =8.0, 7.3, 1.2 Hz, 1H, C_{Ar}H), 6.89–6.82 (m, 3H, C_{Ar}H), 6.70 (dd, J = 2.6,

2.4 Hz, 1H, $C_{Ar}H$), 6.56 (dd, J = 2.6, 2.6 Hz, 1H, $C_{Ar}H$), 6.38 (dd, J = 7.6, 1.2 Hz, 1H, $C_{Ar}H$), 6.32 (dd, J = 7.4, 1.2 Hz, 1H, $C_{Ar}H$), 1.43 (s, 36H, CCH₃), 1.03–0.94 (m, 21H, CH(CH₃)₂). ¹³C NMR (75 MHz, CDCl₃) δ (3C overlapped) 152.9, 152.8,

149.7, 148.7, 148.0, 147.3, 142.9, 142.8, 141.4, 139.6, 137.8, 137.2, 136.7, 135.5, 133.7, 133.1, 131.8, 131.2, 131.1, 127.3, 127.0, 126.8, 126.5, 126.3, 123.6, 123.5, 122.9, 122.6, 122.3, 121.9, 121.4, 119.2, 118.9, 115.2, 111.6, 111.2, 108.4, 108.1, 101.1, 99.5, 35.2, 31.4, 18.5, 11.0. IR (neat, cm⁻¹) 3057, 2961, 2864, 2159 (C=C), 1593, 1521, 1479, 1464, 1409, 1363, 1249, 1231, 1060, 1035, 993, 879, 847, 788, 749, 696, 671. HRMS (ESI) *m/z* calcd for $C_{82}H_{91}IrN_{17}Si^+$ 1534.70418, found 1534.69669 ($|\Delta|$ = 4.88 ppm).

Compound 9c. See the General procedure S3 (p S13). Column chromatography on silica gel using CHCl₃/MeOH (95/5

and 9/1) afforded the pure product (10 mg, 64%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 11.09 (s, 1H, C_{Ar}H), 9.15 (s, 1H, C_{Ar}H), 8.86 (s, 2H, C_{Ar}H), 8.48–8.42 (m, 2H, C_{Ar}H), 8.42–8.35 (m, 1H, C_{Ar}H), 8.35–8.32 (m, 1H, C_{Ar}H), 8.20 (d, J = 2.8 Hz, 1H, C_{Ar}H), 8.19–8.13 (m, 2H, AA' of AA'BB'), 8.05 (d, J = 2.8 Hz, 1H, C_{Ar}H), 8.02–7.95 (m, 2H, BB' of AA'BB '), 7.91–7.84 (m, 1H, C_{Ar}H), 7.72 (d, J = 1.6 Hz, 4H, C_{Ar}H), 7.70–7.67 (m, 1H, C_{Ar}H), 7.57 (bd, J = 7.9 Hz, 1H, C_{Ar}H), 7.54 (t, J = 1.6 Hz, 2H, C_{Ar}H), 7.30 (d, J = 7.7 Hz, 1H, C_{Ar}H), 7.22 (d, J = 8.0 Hz, 1H, C_{Ar}H), 7.01 (ddd, J = 7.7, 7.6, 1.1 Hz, 1H, C_{Ar}H), 6.98 (ddd, J = 7.9, 7.6, 1.1 Hz, 1H, C_{Ar}H), 6.74–6.71 (m, 1H, C_{Ar}H), 6.51 (dd, J = 2.5, 2.4 Hz, 1H, C_{Ar}H), 6.38 (ddd, J = 7.8,

1.0, 0.5 Hz, 1H, $C_{Ar}H$), 6.24 (ddd, J = 7.4, 1.3, 0.5 Hz, 1H, $C_{Ar}H$), 3.07 (s, 1H, CC*H*), 1.45 (s, 36H, CC*H*₃). ¹³C NMR (75 MHz, CDCl₃) δ 152.8, 152.4, 149.3, 149.2, 147.7, 147.1, 143.0, 142.7, 142.0, 140.4, 137.6, 136.9, 136.8, 135.1, 133.7, 132.9, 131.8, 131.0, 130.9, 127.2, 126.50, 126.46, 126.3, 125.9, 123.46, 123.45, 122.9, 122.81, 122.80, 122.4, 121.64, 121.62, 121.2, 120.5, 119.6, 119.4, 115.2, 111.6, 111.1, 108.6, 108.0, 83.4, 78.4, 35.3, 31.5. IR (neat, cm⁻¹) 3298 (CC-H), 3059, 2963, 2930, 2867, 2118 (C=C), 2048, 1609, 1592, 1521, 1479, 1414, 1365, 1261, 1062, 1038, 848, 800, 749, 705, 608. HRMS (ESI) *m/z* calcd for C₇₃H₇₁IrN₁₇⁺ 1376.56842, found 1376.56449 ($|\Delta| = 2.86$ ppm).

Compound 10c (*rel*- Δ , Δ -10c/*rel*- Δ , Λ -10c, 1/1). See the General procedure S3 (p S13). Column chromatography on

silica gel using CHCl₃/MeOH (9/1 to 8/2) afforded the pure product (20 mg, 33%) as a yellow solid.

rel-Δ,Δ-10c. (Measured from a 1/1 mixture of *rel*- Δ ,Δ-10c and *rel*- Δ ,Λ-10c) ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.40 (s, 1H, C_{Ar}*H*), 10.37 (s, 1H, C_{Ar}*H*), 9.83 (s, 1H, C_{Ar}*H*), 9.66 (s, 2H, C_{Ar}*H*), 9.64 (s, 1H, C_{Ar}*H*), 8.94 (d, *J* = 2.8 Hz, 1H, C_{Ar}*H*), 8.93-8.89 (m, 3H, C_{Ar}*H*), 8.72–8.59 (m, 6H, C_{Ar}*H*), 8.45 (d, *J* = 7.9 Hz, 1H, C_{Ar}*H*), 8.40–8.32 (m, 3H, C_{Ar}*H*), 8.22–8.06 (m, 6H, C_{Ar}*H*), 7.84 (d, *J* = 1.4 Hz, 4H,

 $C_{Ar}H), 7.80 \text{ (d, } J = 1.3 \text{ Hz, 1H, } C_{Ar}H), 7.75-7.61 \text{ (m, 6H, } C_{Ar}H), 7.59-7.56 \text{ (m, 1H, } C_{Ar}H), 7.56 \text{ (t, } J = 1.4 \text{ Hz, 2H, } C_{Ar}H), 7.50-7.46 \text{ (m, 1H, } C_{Ar}H), 7.11 \text{ (dd, } J = 8.1, 7.5 \text{ Hz, 1H, } C_{Ar}H), 7.06 \text{ (dd, } J = 8.1, 7.4 \text{ Hz, 1H, } C_{Ar}H), 7.03-6.96 \text{ (m, 2H, } C_{Ar}H), 6.93 \text{ (dd, } J = 7.5, 7.3 \text{ Hz, 1H, } C_{Ar}H), 6.86 \text{ (dd, } J = 7.6, 7.3 \text{ Hz, 1H, } C_{Ar}H), 6.84-6.71 \text{ (m, 6H, } C_{Ar}H), 6.25 \text{ (d, } J = 2.5 \text{ Hz, 1H, } C_{Ar}H), 6.24 \text{ (d, } J = 2.4 \text{ Hz, 1H, } C_{Ar}H), 6.20 \text{ (d, } J = 7.4 \text{ Hz, 1H, } C_{Ar}H), 6.20 \text{ (d, } J = 7.4 \text{ Hz, 1H, } C_{Ar}H), 1.40 \text{ (s, 36H, } CCH_3), 1.04-0.99 \text{ (m, 21H, } CH(CH_3)_2). ^{13}C \text{ NMR (75 MHz, } DMSO-d_6) & 152.5, 149.3, 148.9, 148.63, 148.58, 147.2, 146.6, 146.3, 143.12, 143.07, 143.03, 143.00, 142.0, 140.1-139.0 \text{ (m), } 137.3, 136.8, 136.4, 135.8, 135.5, 133.3-132.8 \text{ (m), } 132.4, 132.2, 132.0, 131.4, 131.1, 131.0, 129.0-128.3 \text{ (m), } 127.7, 127.4, 126.4, 126.3, 126.0, 125.7, 125.4, 123.4, 122.9, 122.73, 122.68, 122.4, 122.0, 121.4, 121.2, 120.6, 114.6, 112.2, 111.8, 111.7, 108.6, 108.5, 101.8, 97.9, 35.0, 31.1, 18.3, 10.5. \text{ (m), } 137.3, 136.8, 136.4, 138.9, 7.9, 35.0, 31.1, 18.3, 10.5. \text{ (m), } 137.3, 136.8, 136.4, 138.9, 7.9, 35.0, 31.1, 18.3, 10.5. \text{ (m), } 137.3, 126.6, 108.5, 101.8, 97.9, 35.0, 31.1, 18.3, 10.5. \text{ (m), } 137.3, 126.6, 108.5, 101.8, 97.9, 35.0, 31.1, 18.3, 10.5. \text{ (m), } 137.3, 138.6, 108.5, 101.8, 97.9, 35.0, 31.1, 18.3, 10.5. \text{ (m), } 137.3, 138.6, 108.5, 101.8, 97.9, 35.0, 31.1, 18.3, 10.5. \text{ (m), } 137.4, 131.1, 131.0, 129.0-128.3 \text{ (m), } 127.7, 127.4, 126.4, 126.3, 126.0, 125.7, 125.4, 123.4, 122.9, 122.73, 122.68, 122.4, 122.0, 121.4, 121.2, 120.6, 114.6, 112.2, 111.8, 111.7, 108.6, 108.5, 101.8, 97.9, 35.0, 31.1, 18.3, 10.5. \text{ (m), } 137.3, 138.6, 108.5, 101.8, 97.9, 35.0, 31.1, 18.3, 10.5. \text{ (m), } 137.3, 136.4, 138.5, 101.8, 97.9, 35.0, 31.1, 18.3, 10.5. \text{ (m), } 137.3, 136.4, 138.5, 101.8, 97.9, 35.0, 31.1, 18.3, 10.5. \text{ (m$

rel- Δ , Λ -10c. ¹H and ¹³C NMR data are identical to *rel-* Δ , Δ -10c within the resolution limits of both NMR techniques.

Mixture (1/1) of *rel*- Δ , Δ -10c and *rel*- Δ , Λ -10c. IR (neat, cm⁻¹) 3054, 2957, 2918, 2849, 2161 (C=C), 1722, 1596, 1524, 1482, 1464, 1411, 1260, 1063, 1032, 843, 804, 747, 699. HRMS (ESI) *m/z* calcd for C₁₁₅H₁₁₄Ir₂N₂₈Si⁺ 2296.87623, found 2296.87427 ($|\Delta| = 0.85$ ppm).

Compound 11c. See the General procedure S2 (p S2): 9c (8 mg, 6 µmol), azidocyclohexane (14 mg, 0.11 mmol), CuI (2

mg, 0.01 mmol), THF (2 mL), PMDTA (3 mg, 0.02 mmol), room temperature, 21 h. Column chromatography on silica gel using CH₂Cl₂ and CH₂Cl₂/MeOH (97.5/2.5) afforded the pure product (5.3 mg, 61%) as a yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 10.35 (s, 1H, C_{Ar}H), 9.35 (s, 1H, C_{Ar}H), 8.68 (m, 2H, C_{Ar}H), 8.42–8.33 (m, 2H, C_{Ar}H), 8.30–8.19 (m, 3H, C_{Ar}H), 8.13 (d, *J* = 2.7 Hz, 1H, C_{Ar}H), 8.11– 8.03 (m, 4H, AA'BB'), 8.11–8.03 (m, 1H, C_{Ar}H), 8.01 (d, *J* = 2.7 Hz, 1H, C_{Ar}H), 7.82–7.79 (m, 1H, C_{Ar}H), 7.76 (d, *J* = 1.4 Hz, 4H, C_{Ar}H), 7.58–7.53 (m, 1H, C_{Ar}H), 7.56 (t, *J* = 1.6 Hz, 2H, C_{Ar}H), 7.19 (d, *J* = 8.1 Hz, 1H, C_{Ar}H), 7.08 (d, *J* = 8.0 Hz, 1H, C_{Ar}H), 7.00 (ddd, *J* = 7.8,

7.6, 1.2 Hz, 1H, C_{Ar}*H*), 6.92–6.80 (m, 3H, C_{Ar}*H*), 6.81 (ddd, *J* = 7.4, 7.4, 1.2 Hz, 1H, C_{Ar}*H*), 6.70–6.66 (m, 1H, C_{Ar}*H*), 6.45 (dd, *J* = 2.7, 2.4 Hz, 1H, C_{Ar}*H*), 6.45–6.42 (m, 1H, C_{Ar}*H*), 6.27 (dd, *J* = 7.1, 1.5 Hz, 1H, C_{Ar}*H*), 4.32 (tt, *J* = 11.5, 3.5 Hz, 1H, C*H*), 2.16–2.06 (m, 2H, CH*H*), 1.94–1.83 (m, 2H, CH*H*), 1.82–1.21 (m, 6H, CH*H*), 1.48 (s, 36H, CC*H*₃). ¹³C NMR (75 MHz, CDCl₃) δ (1C overlapped) 152.9, 149.8, 147.9, 147.3, 147.1, 146.6, 142.9, 142.7, 142.0, 140.9, 137.6, 137.0, 136.8, 135.0, 133.8, 133.0, 131.8, 131.3, 131.0, 128.8, 127.6, 127.2, 126.5, 126.4, 124.1, 123.4, 123.2, 123.0, 122.84, 122.80, 122.3, 122.0, 121.2, 120.2, 119.9, 119.73, 119.68, 115.3, 111.4, 111.0, 108.3, 107.8, 60.4, 35.4, 33.3, 31.5, 25.1, 22.7. IR (neat, cm⁻¹) 3062, 2959, 2936, 2863, 1592, 1524, 1480, 1449, 1414, 1362, 1247, 1230, 1061, 1036, 846, 749. HRMS (ESI) *m*/*z* calcd for C₇₉H₈₂IrN₂₀+ 1501.666372, found 1501.66956 ($|\Delta|$ = 3.89 ppm).

Compound 12c (rel- Δ , Δ -trans-12c and rel- Δ , Λ -trans-12c, 1/1). See the General procedure S3 (p S13). Column

chromatography on silica gel using CHCl₃/MeOH (99/1) and CHCl₃/MeOH (8/2) afforded the pure product as a mixture of *cis*- and *trans*-isomer. The major *trans*-isomer was separated from the minor *cis*-isomer by a preparative TLC using CHCl₃/MeOH (92/18). Subsequent purification by column chromatography on silica gel using CHCl₃/MeOH (99.5/0.5, 99/1, 95/5, 9/1 and 8/2) afforded the pure *trans*-isomer (7.0 mg, 30%) as a yellow solid. The high noise to signal ratio did not allow for a reliable

description of the ¹³C NMR signals.

rel- Δ , Δ *-trans-***12c**. (Measured from a 1/1 mixture of *rel-* Δ , Δ *-trans-***12c** and *rel-* Δ , Λ *-trans-***12c**) ¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 1H, C_{Ar}H), 10.31 (s, 1H, C_{Ar}H), 8.98 (s, 1H, C_{Ar}H), 8.73–8.56 (m, 3H, C_{Ar}H), 8.56–8.45 (m, 1H, C_{Ar}H), 8.43–8.27 (m, 4H, C_{Ar}H), 8.18–7.91 (m, 11H, C_{Ar}H), 7.87–7.84 (m, 1H, C_{Ar}H), 7.76–7.64 (m, 5H, C_{Ar}H), 7.54–7.50 (m, 2H, C_{Ar}H), 7.29–7.25 (m, 2H, C_{Ar}H), 7.23 (d, *J* = 8.1 Hz, 1H, C_{Ar}H), 7.18 (bd, *J* = 8.0 Hz, 1H, C_{Ar}H), 7.06–6.79 (m, 11H, C_{Ar}H), 6.76–6.71 (m, 1H, C_{Ar}H), 6.62–6.55 (m, 2H, C_{Ar}H), 6.52–6.47 (m, 1H, C_{Ar}H), 6.41 (d, *J* = 7.5 Hz, 1H, C_{Ar}H), 6.30 (d, *J* = 7.3 Hz, 1H, C_{Ar}H), 6.20 (m, 21H, CH(CH₃)₂).

rel- Δ , Λ *-trans-***12c.** ¹H NMR data are identical to *rel-* Δ , Δ *-trans-***10c** within the resolution limits of the NMR technique.

Mixture (1/1) of *rel-* Δ , Δ *-trans-*12c and *rel-* Δ , Λ *-trans-*12c. IR (neat, cm⁻¹) 3054, 2959, 2924, 2863, 2163 (C=C), 1724, 1591, 1523, 1482, 1412, 1260, 1083, 1060, 1036, 1018, 798, 752, 700, 669. HRMS (ESI) *m/z* calcd for C₁₁₅H₁₂₀Ir₂N₂₈Si⁺ 2302.92318, found 2302.93289 ($|\Delta|$ = 4.21 ppm).

Photophysical Characterisation

Cmnd	Absorbance ^[a]	Emission at room temperature ^[a,b]					Emission at 77 K ^[b]
Стра	$^{arepsilon_{355}}_{(imes 10^4~{ m M}^{-1}~{ m cm}^{-1})}$	$\lambda_{max}(nm)$	$arPsi_{ m air}$	$arPsi_{ m argon}$	$ au_{ m air}$ (µs)	$ au_{ m argon} (\mu s)$	- τ (μs)
3b	0.57	551	0.01	0.05	0.16	0.20	4.1
4b	0.66	513	0.02	0.08	1.3 (18%) 0.34 (82%)	1.8 (25%) 0.78 (75%)	4.3
5b	1.2	553	0.03	0.14	1.53 (60%) 0.40 (40%)	2.10 (23%) 0.91 (77%)	[c]
6b	2.2	546	0.01	0.03	2.1 (3%) 0.50 (97%)	8.0 (1%) 1.6 (99%)	[c]
7 b	0.47	543	0.03	0.08	1.82 (10%) 0.80 (90%)	1.78 (20%) 0.69 (80%)	[c]
8b	0.27	550	0.03	0.19	0.14	0.21	4.4
10Ь	0.63	518	0.02	0.05	0.17 (17%) 0.04 (83%)	1.6 (61%) 0.31 (39%)	4.5 (25%) 1.7 (75%)
3c	0.34	539	0.02	0.05	0.43 (31%) 0.20 (69%)	0.31 (75%) 0.11 (11%)	15.0 (40%) 4.0 (60%)
4c	0.41	547	0.04	0.05	0.54 (12%) 0.20 (88%)	2.10 (24%) 0.86 (76%)	17.5 (22%) 5.43 (78%)
5c	1.3	540	0.01	0.04	0.54 (10%) 0.2 (90%)	0.69 (4%) 0.19 (90%)	[c]
6c	2.0	544	0.001	0.005	0.34 (62%) 0.05 (38%)	2.00 (11%) 0.47 (89%)	[c]
8c	0.15	540	0.02	0.08	0.58 (25%) 0.19 (75%)	0.56 (51%) 0.25 (49%)	17.0 (44%) 4.8 (56%)
10c	0.63	511	0.04	0.34	0.42 (74%) 0.10 (26%)	0.66 (30%) 0.18 (70%)	14.0 (30%) 3.3 (70%)
11c	0.22	507	0.01	0.03	0.5 (3%) 0.17 (97%)	1.0 (13%) 0.3 (87%)	24.0 (23%) 5.0 (77%)
12c	0.10	507	0.03	0.10	2.3 (39%) 0.7 (61%)	2.3 (15%) 0.84 (85%)	17.0 (50%) 4.5 (50%)

 Table S1. Photophysical characterisation data of the studied iridium complexes.

[a] Measured in THF/CH_2Cl_2 (9/1). [b] Excitation at 355 nm. [c] These compounds showed a very high scattering in the rigid matrix that did not allow a good statistical analysis of the time resolved data.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S1. Emission profiles at room temperature of compounds 3b-8b and 10b (excitation at 355 nm).

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S2. Emission profiles at room temperature of compounds 3c-8c and 10c-12c (excitation at 355 nm).

Figure S3. Emission profiles at 77 K of compounds 3b-8b and 10b (excitation at 355 nm).

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S4. Emission profiles at 77 K of compounds 3c-8c and 10c-12c (excitation at 355 nm).

Electrochemical Characterisation

Entry	Cmpd —	Oxid	Oxidation	
		E _{ox} (V)	E _{1/2} (V)	E _{red} (V)
1	3b	[b]	[c]	-1.83 ^[d]
2	5b	[b]	[c]	[b]
3	6Ь	[b]	[c]	-1.80 ^[d]
4	8b	[b]	[c]	-1.84 ^[d]
5	3c	+1.01 ^[e]	+0.98	-1.83 ^[d]
6	5c	[b]	[c]	[b]
7	6c	[b]	[c]	[b]
8	8c	[b]	[c]	-1.85 ^[d]

Table S2. Cyclic v oltammetry characterisation data of the selected iridium complexes.^[a]

[a] Cyclic voltammetry measurements were performed on an Eco Chemie Autolab PGSTAT20 instrument at a scan rate of 0.1 V s⁻¹ using MeCN as a solvent. A conventional three-electrode cell with Pt working and auxiliary electrodes, and Ag/AgNO₃ reference electrode was used. A solution of tetrabutylammonium hexafluorophosphate(V) (TBAH) in MeCN (0.1M) was used as an electrolyte. [b] Not reproducible. [c] Not applicable. [d] Irreversible. [e] Irreversible oxidation of Cl⁻ was observed at +0.54 V. Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

References

- [S1] C. S. Andersen and K. V. Gothelf, Org. Biomol. Chem. 2009, 7, 58-60.
- [S2] M. Nonoyama, Bull. Chem. Soc. Jpn. 1974, 47, 767-768.
- [S3] J. H. Boyer and J. Hamer, J. Am. Chem. Soc. 1955, 77, 951–954.
- [S4] J. W. Tilley and S. Zawoiski, J. Org. Chem. 1988, 53, 386–390.