Access to metastable complex ion conductors via mechanosynthesis: Preparation, microstructure and conductivity of (Ba,Sr)LiF₃ with inverse perovskite structure

A. Düvel,¹ K. Efimov,¹ A. Feldhoff,¹ P. Heitjans,¹ S. Wegner,² and M. Wilkening*,¹

¹Institute of Physical Chemistry and Electrochemistry, and Center for Solid State Chemistry and New Materials (ZFM), Leibniz University Hannover, Callinstr. 3a, D-30167 Hannover, Germany ²Bruker BioSpin GmbH, Silberstreifen, D-76287 Rheinstetten, Germany

e-mail: wilkening@pci.uni-hannover.de

S1

Fig. S1: In situ XRPD showing the decomposition of $Ba_{0.74}Sr_{0.26}F_2$ prepared by high-energy ball milling. The equilibration time before each scan was 60 min. Heating and cooling rates were set to 12 K/min. With increasing temperature Sr-rich $(Ba,Sr)F_2$ is formed. Interestingly, $BaLiF_3$ rather than BaF_2 is reformed. Dashed lines shall help to compare with literature values for pure SrF_2 and $BaLiF_3$ (indicated by vertical lines). Note that the peaks of $BaLiF_3$ shift towards smaller diffraction angles due to lattice expansion when the perovskite is exposed to elevated temperatures. See main text for further details.

Fig. S2: a) to b) XRPD of stoichiometric mixtures of BaF_2 , SrF_2 and LiF which were ground, heated at 973 K and then air-quenched. c) XRPD of an equimolar mixture of BaF_2 and SrF_2 which was mixed with LiF, milled for 48 h in the Fritsch planetary mill, heated at 1023 K (5 h) and then air-quenched. In each case a mixture of different phases is formed. The peaks belonging to SrF_2 are clearly visible proving the failure of the synthesis route. The amount of Sr incorporated into $BaLiF_3$ turns out to be rather small not exceeding more than 10 %. d) and e) XRPD of $Ba_{0.60}Sr_{0.40}F_2$ and $Ba_{0.74}Sr_{0.26}F_2$ which were prepared using a mechanochemical route, i. e., the source materials were treated for several hours in a planetary mill.