An Enhanced CdS/TiO₂ Photocatalyst with High Stability and Activity: Effect of Mesoporous Substrate and Bifunctional Linking Molecule

^a State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing, 210009, China. Fax: +86-25-83588063; Tel: +86-25-83588063; E-mail: xhlu@njut.edu.cn **Synthesis of Mesoporous TiO**₂. The procedure was as follows: (I) preparation of $K_2Ti_2O_5$ whisker: A reactant mixture with a TiO_2/K_2O molar value of 1.9 was prepared by uniformly adding K_2CO_3 to $TiO_2 \cdot nH_2O$ and then sintered at 810 °C for 2 h. (II) Hydration: The sintered product was soaked in distilled water at ambient temperature in a closed container for about 7 days. (III) Ion exchange: the hydration product was suspended in 100 mL of vigorously stirred 0.1 M HCl solution until K⁺ ion was totally exchanged. The product was filtered and washed with distilled water and dried in a desiccator at 60°C under vacuum. (IV) Calcination: ion exchange product was sintered in a muffle oven at 500°C in the air for 2 h. After natural cooling, the mesoporous TiO₂ as photocatalyst carriers were synthesized, denoted as TiO₂(m).

Raman spectra characterization. Raman spectra were obtained with a Horiba HR 800 spectrometer. The 514.5 nm radiation from a 20 mW air-cooled argon ion laser was used as the exciting source. Data acquisition was the result of 2×3 accumulations for samples.

Figure S1. Schematic synthesis route of (a) CdS-TiO₂ and (b) CdS-MPA-TiO₂

Figure S2. Raman spectra of (a) MPA-TiO₂(m) and (b) CdS-MPA-TiO₂(m). Inset: Characteristic stretching band of S-H. (• CdS \checkmark TiO₂)

Figure S3. SEM images of (a) TiO₂(m), (c) CdS-TiO₂(m) and (d) CdS-MPA-TiO₂(m); FESEM image of (b) TiO₂(m).

Figure S4. TEM images in larger scale (50nm) of (a) 3% CdS-TiO₂(m), (b) 3% CdS-MPA-TiO₂(m) and corresponding EDS analysis (c), (d).

Supplementary Material (ESI) for Journal of Materials Chemistry # This journal is (c) The Royal Society of Chemistry 2011

Figure S5. Dependence of methylene blue degradation rates on $CdS-TiO_2(m)$ (a) and $CdS-MPA-TiO_2(m)$ (b) with different CdS content