Electronic Supplementary Information

Covalently bonded dendrimer-maghemite nanosystems: nonviral vectors for in vitro gene magnetofection

Blanca González,^{1,3} Eduardo Ruiz-Hernández,^{1,3} María José Feito,² Carlos López de Laorden,^{1,3} Daniel Arcos,^{1,3} Cecilia Ramírez-Santillán,² Concepción Matesanz,² María Teresa Portolés,² María Vallet-Regí*^{1,3}

¹ Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia. Universidad Complutense de Madrid. Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.

² Departamento de Bioquímica, Facultad de Ciencias Químicas. Universidad Complutense de Madrid. Avenida Complutense s/n, 28040 Madrid, Spain.

³ Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain.

Reagents

The reactions for the synthesis of dendritic precursors (G1-G3) were performed under an inert atmosphere using standard Schlenk techniques. Dichloromethane was dried by standard procedures over phosphorus (V) oxide and distilled immediately prior to use. The dendritic polyamines DAB(NH₂)_x (x = 4, 8 and 16) were purchased from Sigma-Aldrich, Inc. (x = 4) and from SyMO-Chem BV (x = 8 and 16), 3-isocyanatopropyltriethoxysilane and 3-aminopropyltriethoxysilane from ABCR GmbH & Co. KG and iron (III) chloride hexahydrate, iron (II) chloride tetrahydrate and iron (III) nitrate nonahydrate from Sigma-Aldrich Inc. These compounds were used without further purification. Deionized water was further purified by passage through a Milli-Q Advantage A-10 Purification System (Millipore Corporation) to a final resistivity of 18.2 MΩ cm. All other chemicals (nitric acid 65% wt., ammonia 30% wt., absolute ethanol, acetone, etc) were of the best quality commercially available and used as received.

Equipment

Solution state nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AVANCE AV-250 and a Bruker AVANCE AV-500 spectrometers. Chemical shifts are reported in parts per million (δ) with reference to residual solvent resonances.

Electrospray mass spectrometry (ESI MS) analyses were conducted on a "QSTAR Pulsar i" mass spectrometer from Applied Biosystems, equipped with a hybrid analyser Q-TOF (quadrupole-time of flight). The samples were directly infused into the ESI source using a syringe pump at a flow rate of 10 μ L/min.

Fourier transformed infrared (FTIR) spectra were colleted in a Thermo Nicolet Nexus spectrometer equipped with a *Goldengate* attenuated total reflectance (ATR) device.

Dynamic light scattering (DLS) and zeta-potential (ζ -potential) measurements were performed in a Zetasizer Nano Series instrument, fitted with a 633 nm laser and coupled to a MPT-2 multipurpose titrator from Malvern. ζ -potential can be described by Smoluchowski's equation: ζ = $4\pi\eta U/\epsilon$, where U is the electrophoretic mobility, η is the viscosity of water, and ϵ is the dielectric constant of water. Measurements were made using 10 mL of each sample of an iron oxide concentration ranging 1 to 5 mg/mL and the pH was adjusted by titrating with 0.10 M HNO₃ or 0.10 M NH₄OH solutions at 298 K. Each point was taken on triplicate.

Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analyses were collected in a Varian VISTA AX apparatus. A defined volume of the colloidal samples was digested in HClO₄, then in HF and H₂SO₄ and, finally, in concentrated HCl before the measurements. The obtained iron concentration was translated into γ -Fe₂O₃, since no other iron oxide phase was observed in the X-ray diffraction analysis of dry powdered samples.

X-ray powder diffraction (XRD) data were collected on a Philips X'Pert Plus diffractometer (Philips Electronics NV, Eindhoven, Netherlands) with Bragg-Brentano geometry, operating with CuK α radiation ($\lambda = 1.5406$ Å) at 40 kV and 20 mA. The diffractograms were collected over the range between 5° and 120° 20 with a step size of 0.02° and a contact time of 10 s per step.

The magnetic characterization system used was a LakeShore (7304 model) Vibrating Sample Magnetometer. The hysteresis of the magnetization of the ferrofluids was obtained by changing H between + 12500 and - 12500 Oe at 298 K.

Chemical microanalyses were performed with a Perkin Elmer 2400 CHN thermo analyzer. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were carried out in air between 30 and 1000 °C with a flow rate of 100 mL/min and a heating rate of 5 °C/min using a Perkin Elmer Pyris Diamond thermobalance.

Gene delivery experiments were carried out in the presence and in the absence of a magnetic field provided by a magnetic plate (MF14000, OzBiosciences).

Figure S1. X-ray powder diffraction pattern of the γ -Fe₂O₃ NPs.

Selected characterization data for **G1**:

 $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 5.86 (0.35H, t, N*H*CONH), 5.68 (0.65H, t, N*H*CONH), 5.56 (0.35H, t, N*H*CONH), 5.39 (0.65H, t, N*H*CONH), 3.65 (6H, q, CH₃CH₂O), 3.04 (2H, m, CH₂NHCONH), 2.98 (2H, m, CH₂NHCONH), 2.58 (6H, m, CH₂NH₂), 2.30 (8H, br, CH₂N), 2.24 (4H, br, CH₂N), 1.55 (6H, br, NH₂), 1.44 (10H, m, CH₂CH₂CH₂), 1.27 (4H, br, CH₂CH₂CH₂CH₂), 1.06 (9H, t, CH₃CH₂O), 0.47 (2H, t, CH₂Si).

$$\begin{split} &\delta_C(125.77 \text{ MHz; CDCl}_3): \ 158.6 \ (\text{NHCONH}), \ 58.0 \ (\text{CH}_3\text{CH}_2\text{O}), \ 53.7, \ 51.7 \ (\text{CH}_2\text{N}), \ 42.6 \\ &(\text{CH}_2\text{NHCONH}), \ 40.5 \ (\text{CH}_2\text{NH}_2), \ 38.8 \ (\text{CH}_2\text{NHCONH}), \ 30.6, \ 30.5, \ 29.9, \ 24.8, \ 24.7, \ 24.5 \\ &(\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2), \ 27.0, \ 23.5 \ (\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2, \ \text{NCH}_2\text{CH}_2\text{CH}_2\text{Si}), \ 18.0 \ (\text{CH}_3\text{CH}_2\text{O}), \ 7.4 \ (\text{CH}_2\text{Si}). \end{split}$$

δ_{Si}(99.4 MHz; CDCl₃): -45.4 (s, CH₂Si(OCH₂CH₃)₃).

 $v_{max}(ATR)/cm^{-1}$ 3347 v(NH) NHCONH; 3285 v(NH) NH₂; 2926, 2863, 2799 $v_{as}(CH)$, $v_s(CH)$ CH₂ and CH₃ groups; 1639 v(C=O) amide I; 1564 δ (CNH) amide II; 1462, 1388 v(CN); 1250 v(CN) + δ (CNH) amide III; 1100, 1073 $v_{as}(SiO)$, 953 $v_s(SiO)$, 770 δ (SiOC) SiOC group; 639 v(SiC).

Selected characterization data for G2:

 $\delta_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 5.45 (br, N*H*CONH), 5.40 (br, N*H*CONH), 5.32 (br, N*H*CONH), 5.27 (br, N*H*CONH), 3.65 (6H, q, CH₃CH₂O), 2.67 (2H, br, CH₂NHCONH), 2.62 (2H, m, CH₂NHCONH), 2.22 (14H, t, CH₂NH₂), 1.97 (22H, t, CH₂N), 1.94 (14H, br, CH₂N), 1.25 (14H, s, NH₂), 1.09 (26H, m, CH₂CH₂CH₂), 0.90 (4H, br, CH₂CH₂CH₂CH₂), 0.72 (9H, t, CH₃CH₂O), 0.11 (2H, t, CH₂Si).

 $\delta_{C}(125.77 \text{ MHz}; \text{CDCl}_{3})$ 159.0 (NHCONH), 58.3 (CH₃CH₂O), 53.7, 52.3, 51.9, 51.7 (CH₂N), 42.8 (CH₂NHCONH), 40.7 (CH₂NH₂), 38.7 (CH₂NHCONH), 30.9, 27.5, 24.7 (CH₂CH₂CH₂), 25.1, 23.8 (CH₂CH₂CH₂CH₂CH₂, NCH₂CH₂CH₂Si), 18.3 (CH₃CH₂O), 7.7 (CH₂Si).

 $\delta_{Si}(99.4 \text{ MHz}; \text{CDCl}_3) - 45.7 \text{ (s, CH}_2Si(\text{OCH}_2\text{CH}_3)_3).$

Selected characterization data for **G3**:

 $δ_{\rm H}(500 \text{ MHz}; \text{CDCl}_3)$ 5.43 (br, N*H*CONH), 5.17 (br, N*H*CONH), 3.52 (6H, q, CH₃C*H*₂O), 2.89 (4H, br, C*H*₂NHCONH), 2.44 (30H, br, C*H*₂NH₂), 2.16 (84H, br, C*H*₂N), 1.48 (30H, br, N*H*₂), 1.30 (58H, br, CH₂C*H*₂CH₂), 1.11 (4H, br, CH₂C*H*₂C*H*₂), 0.93 (9H, t, C*H*₃CH₂O), 0.34 (2H, t, C*H*₂Si).

 $\delta_{C}(125.77 \text{ MHz}; \text{CDCl}_{3})$ 158.2 (NHCONH), 57.7 (CH₃CH₂O), 53.7, 53.0, 51.7, 51.6, 51.3 (CH₂N), 42.3 (CH₂NHCONH), 40.1 (CH₂NH₂), 38.2 (CH₂NHCONH), 30.2, 24.5, 23.9 (CH₂CH₂CH₂CH₂), 26.9, 23.2 (CH₂CH₂CH₂CH₂, NCH₂CH₂CH₂Si), 17.7 (CH₃CH₂O), 7.1 (CH₂Si).

 $\delta_{Si}(99.4 \text{ MHz}; \text{CDCl}_3) - 45.4 (s, \text{CH}_2Si(\text{OCH}_2\text{CH}_3)_3).$

m/z	Relative		m/z	
experimental	abundance	Assignment	theoretical	$\Delta m/z$
(amu)	(%)		(amu)	(amu)
Dendritic precursor G1 ^a				
317.34	24.14	$[M_0 + H^+]^+$	317.34	
564.47	100	$[M_1 + H^+]^+$	564.46	247.13
811.59	11.23	$[M_2 + H^+]^+$	811.59	247.12
1058.71	0.36	$[M_3 + H^+]^+$	1058.71	247.12
159.18	9.83	$[M_0 + 2H^+]^{2+}$	159.17	
282.74	20.77	$[M_1 + 2H^+]^{2+}$	282.73	123.56
406.30	20.49	$[M_2 + 2H^+]^{2+}$	406.30	123.56
Dendritic precursor G2 ^b				
387.42	28.49	$[M_0 + 2H^+]^{2+}$	387.40	
510.98	100	$[M_1 + 2H^+]^{2+}$	510.97	123.56
634.55	39.73	$[M_2 + 2H^+]^{2+}$	634.53	123.57
758.62	6.99	$[M_3 + 2H^+]^{2+}$	758.59	123.57
Dendritic precursor G3 ^c				
844.40	27.59	$[M_0 + 2H^+]^{2+}$	844.37	
967.97	47.34	$[M_1 + 2H^+]^{2+}$	967.93	123.57
1091.53	22.72	$[M_2 + 2H^+]^{2+}$	1091.49	123.56
1215.10	5.14	$[M_3 + 2H^+]^{2+}$	1215.05	123.57
1338.66	0.70	$[M_4 + 2H^+]^{2+}$	1338.62	123.56
563.28	55.99	$[M_0 + 3H^+]^{3+}$	563.25	
645.65	100	$[M_1 + 3H^+]^{3+}$	645.62	82.37
728.03	58.70	$[M_2 + 3H^+]^{3+}$	728.00	82.38
810.41	15.96	$[M_3 + 3H^+]^{3+}$	810.37	82.38
422.71	17.85	$[M_0 + 4H^+]^{4+}$	422.69	
484.50	63.84	$[M_1 + 4H^+]^{4+}$	484.49	61.79
546.28	35.16	$[M_2 + 4H^+]^{4+}$	546.25	61.78
608.07	9.48	$[M_3 + 4H^+]^{4+}$	608.03	61.79

Table S1. Data and assignments of ESI-TOF mass spectra of dendritic precursors G1-G3.

^{*a*} $M_0 = DAB(NH_2)_4 = C_{16}H_{40}N_6$; $M_1 = DAB(NH_2)_3Si_1 = C_{26}H_{61}N_7O_4Si$; $M_2 = DAB(NH_2)_2Si_2 = C_{36}H_{82}N_8O_8Si_2$; $M_3 = DAB(NH_2)_1Si_3 = C_{46}H_{103}N_9O_{12}Si_3$.

^b $M_0 = DAB(NH_2)_8 = C_{40}H_{96}N_{14}; M_1 = DAB(NH_2)_7Si_1 = C_{50}H_{117}N_{15}O_4Si; M_2 = DAB(NH_2)_6Si_2 = C_{60}H_{138}N_{16}O_8Si_2; M_3 = DAB(NH_2)_5Si_3 = C_{70}H_{159}N_{17}O_{12}Si_3.$

 c M_{0} = DAB(NH₂)₁₆ = $C_{88}H_{208}N_{30};$ M_{1} = DAB(NH₂)₁₅Si₁ = $C_{98}H_{229}N_{31}O_{4}Si;$ M_{2} = DAB(NH₂)₁₄Si₂ = $C_{108}H_{250}N_{32}O_{8}Si_{2};$ M_{3} = DAB(NH₂)₁₃Si₃ = $C_{118}H_{271}N_{33}O_{12}Si_{3};$ M_{4} = DAB(NH₂)₁₂Si₄ = $C_{128}H_{292}N_{34}O_{16}Si_{4}.$

Figure S2. Number weighted hydrodynamic diameter distribution obtained by DLS for the G3 dendrimer functionalized MNPs nanoparticles in water (*ca.* 1-5 mg/mL) at pH 7.4, measured after seven months of storage. Mean hydrodynamic diameter *ca.* 36 nm.