ARTICLE TYPE

Electronic Supplementary Information (Table S1, Fig. S1~S3)

Preparation of mesostructured silica-micelle hybrids and their conversion to mesoporous silica modified controllably with immobilized hydrophobic blocks by using triethoxysilyl-terminated PEO-PPO-PEO triblock copolymer

Chihiro Urata,^a Yasuhiro Tamura,^a Yusuke Yamauchi^{bc} and Kazuyuki Kuroda*^{ad}

¹⁰ ^a Faculty of Science & Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555, Japan. Fax: +81-3-5286-3199; Tel: +81-3-5286-3199; E-mail: kuroda@waseda.jp (K.K.)

^b World Premier International (WPI) Research Center, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Ibaraki 305-0047, Japan.

^c Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Kawaguchi-shi, Saitama 332-0012, Japan.

^d Kagami Memorial Laboratory for Material Science and Technology, Waseda University, Nishiwaseda 2-8-26, Tokyo 169-0051, Japan. Table S1 Textural properties of SMHs.

^{*a*} Specific surface area calculated by the BET method. ^{*b*} Pore size calculated by the NLDFT method. ^{*c*} Pore size calculated by the BJH method. ^{*d*} Total pore volume calculated at $P/P_0 = ca. 0.95$. ^{*e*} Micro pore solution of volume evaluated using the *t*-plot method. ^{*f*} Weight percent of P123 derived species in the samples estimated from the TG-DTA data.

sample	X	d-spacing	$S_{_{ m BET}}{}^a$	$D_{_{ m NLDFT}}{}^{b}$	$D_{ m BJH}^{\ \ c}$	$V_{\rm total}^{\ \ d}$	$V_{ m micro}^{e}$	Organics ^f
		nm	$m^2 g^{-1}$	nm	nm	$cm^3 g^{-1}$	$cm^3 g^{-1}$	wt %
asSMH	100	9.4	-	-	-	-	-	49
	75	9.5	-	-	-	-	-	52
	50	9.4	-	-	-	-	-	51
	25	9.4	-	-	-	-	-	53
	0	9.6						57
exSMH	100	10	130	7.3	7.9	0.29	0	48
	75	10	160	6.8	6.7	0.31	0	43
	50	9.4	230	6.5	6.1	0.39	0	37
	25	8.9	290	6.0	5.3	0.42	0	21
		8.7	590	5.4	4.7	0.57	0.065	7.9
ascalSMH	100	7.7	290	5.2	3.9	0.30	0.004	-
	75	7.8	280	4.9	3.8	0.31	0.018	-
	50	7.9	320	5.2	4.2	0.37	0.012	-
	25	7.8	280	5.2	3.8	0.31	0.009	-
		7.7	<u>310</u>	5.2	4.1	0.40	0.004	
excalSMH	100	10	480	6.7	6.8	0.63	0	-
	75	8.9	440	6.5	6.2	0.51	0.018	-
	50	8.7	430	6.0	5.4	0.52	0.016	-
	25	8.2	350	5.3	4.4	0.39	0.028	-
	0	7.9	320	5.0	4.1	0.37	0.015	-

Fig. S1 TEM images of the (a) asSMH_100, (b) exSMH_100, (c) ascalSMH_100, (d) excalSMH_100 (Scale bar : 200 nm)

5

Fig. S2 Illustration of several asSMHs obtained by spray drying, spin coating, and anodic alumina membrane templating methods.

Experimental conditions

Spray drying: The spray dry apparatus used in this study is a laboratory-made one altered from a Spray Dryer GA32 (Yamato Scientific Co.). Droplets of a precursor solution for SMH_100 were generated from a two-flow spray nozzle (the diameters of the spray drying nozzles are 406 and 1270 μm). The droplets were carried by an air flow (250 °C) and dried in a heating zone. Finally, powdery samples were collected by a cyclone separator.

Spin coating: A precursor solution for SMH_100 was spin-coated on glass substrates at 2000 rpm for 10 seconds and air-dried at room temperature for 2 days.

Anodic alumina membrane (AAM) templating: A precursor solution for SMH_100 was dropped on ¹⁵ AAM (Whatman, Anodisc 25, pore diameter ca. 200 nm, thickness 60 μ m) and infiltrated into the AAM channels and air-dried at room temperature for 2 days. The AAM was dissolved by 5 wt % H₃PO₄.

Fig. S3 SAXD patterns and TEM images (inset) of asSMH_0-IBU and asSMH_100-IBU