Electronic Supplementary Information (ESI)

Realization of highly photoresponsive azobenzene-functionalized monolayers

Mina Han,*^{*a*} Takumu Honda,^{*b*} Daisuke Ishikawa,^{*b*} Eisuke Ito,^{*c*} Masahiko Hara^{*bc*} and Yasuo Norikane^{*d*}

^a Department of Chemistry and Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan. Fax: +81 45 924 5447; Tel: +81 45 924 5447; E-mail: han.m.ab@m.titech.ac.jp

^b Department of Electronic Chemistry, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan.

^c RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.

^d Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, Higashi 1-1-1, Tsukuba, Ibaraki 305-8565, Japan.

Fig. S1 Changes in the normalized absorbance at λ_{max} of $\pi - \pi^*$ band of (a) MeSH and (b) EtSH in dichloromethane as a function of dark incubation after UV light irradiation. The ratio of the trans form of EtSH was obtained from ¹H NMR data (in CD₂Cl₂).

Fig. S2 Changes in (A_t-A_{ap}) of cis-EtSH SAMs as a function of thermal cis-to-trans isomerization time after UV light irradiation. A_{ap} and A_t correspond to absorbance at λ_{max} of as-prepared SAMs and after dark incubation for time (t), respectively.