SUPPORTING INFORMATION

Aqueous room-temperature synthesis of Au-Rh, Au-Pt, Pt-Rh, and Pd-Rh alloy nanoparticles: Fully tunable compositions within the miscibility gaps

Elizabeth R. Essinger-Hileman, Danielle DeCicco, James F. Bondi, and Raymond E. Schaak*

Department of Chemistry and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802

Additional Table and Figures

Figure S1. Powder XRD patterns for Au-Rh alloy nanoparticles synthesized with different polymeric and molecular stabilizers. All nominal Au:Rh compositions were 1:1 except for CTAB (2:3) and PVP (1:2). Vertical lines indicate the (111), (200), and (220) peak positions (left to right) for Au (red) and Rh (blue).

Figure S2. Plots of estimated composition (via Vegard's Law analysis of the powder XRD data) vs. nominal composition for (a) Au-Pt, (b) Pt-Rh, and (c) Pd-Rh alloy nanoparticles. The lines represent the ideal direct 1:1 correlation between estimated and nominal composition.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (C) The Royal Society of Chemistry 2011

Figure S3. Powder XRD patterns for Au-Rh nanoparticles anchored on (a) Vulcan carbon and (b) wild-type M13 bacteriophage. Vertical lines indicate the (111), (200), and (220) peak positions (left to right) for Au (red) and Rh (blue). EDS spectra are shown for (c) Au-Rh (1:1 nominal) on Vulcan carbon and (d) Au-Rh (1:2 nominal) on M13 bacteriophage.

Table S1.	Volumes of reagent solutions
-----------	------------------------------

Alloy	Ratio	μL of 50 mM solution				
		HAuCl ₄ ·3H ₂ O	RhCl₃• <i>x</i> H₂O	K ₂ PtCl ₄	PdCl ₂	
Au:Rh	10:1	909	91	-	-	
	7:1	875	125	-	-	
	5:1	833	167	-	-	
	3:1	750	250	-	-	
	2:1	667	333	-	-	
	5:3	625	375	-	-	
	1:1	500	500	-	-	
	3:5	375	625	-	-	
	1:2	333	667	-	-	
	1:3	250	750	-	-	
	1:5	167	833	-	-	
	1:7	125	875	-	-	
	1:10	90	909	-	-	
Au:Pt	7:1	875	-	125	-	
	3:1	750	-	250	-	
	1:1	500	-	500	-	
	1:3	250	-	750	-	
	1:7	125	-	875	-	
PtRh	7:1	-	125	875	-	
	3:1	-	250	750	-	
	1:1	-	500	500	-	
	1:3	-	750	250	-	
	1:7	-	875	125	-	
PdRh	7:1	-	125	-	875	
	3:1	-	250	-	750	
	1:1	-	500	-	500	
	1:3	-	750	-	250	
	1:7	-	875	-	125	