Improving silica matrices for encapsulation of E. coli using osmoprotectors

Mercedes Perullini¹, Makhlouf Amoura,³ Cécile Roux³, Thibaud Coradin,³* Jacques Livage,³ Maria Laura Japas⁴, Matías Jobbágy^{1,2}and Sara A. Bilmes^{1,2*}

SUPPLEMENTARY INFORMATION

 Table 1: composition of hydrogels

sample	[Si] _{SiNa} : [Si] _{Ludox}	[Si] _{SiNa} (M)	[Na ⁺] _{total} (M)
HG-1:3	1:3	0.52	0.32
HG-1:3.5	1:3.5	0.46	0.29
HG-1:4	1:4	0.42	0.27
HG-1:4.5	1:4.5	0.38	0.24
HG-1:5	1:5	0.35	0.23

Figure S1. SEM micrographs of aerogels derived from hydrogels with glycine betaine 10 mM: (a) HG-1:3, B; (b) HG-1:4, B; (c) HG-1:5, B and without glycine betaine: (d) HG-1:5. All pictures were taken with the same magnification and in all cases samples were not metallised.

Figure S2. Adsorption isotherms

Figure S3a. Viability of *E. coli* encapsulated in HG-1:3 matrices with different concentrations of glycine betaine (0, 1 and 10 mM). **S3b.** Growth of *E. coli* in MMG medium with B concentration 0 mM (\bullet), 1 mM (\circ), 10 mM (\blacksquare) and 100 mM (Δ) GB.

Figure S4. Growth of *E. coli* in MMG medium at the NaCl concentration 0 mM (•), 100 mM (\circ), 200 mM (\triangledown) and 400 mM (Δ).

Figure S5. Growth of *E. coli* in MMG medium and B concentration 10 mM, with NaCl concentration 0 mM (•), 100 mM (\circ), 200 mM ($\mathbf{\nabla}$) and 400 mM (Δ).

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is $\ensuremath{\mathbb{O}}$ The Royal Society of Chemistry 2011

Figure S6. Viability decay of *E. coli* in MMG medium without osmoprotectors (•), with 10 mM B (\circ), with 10% G (\triangledown) and with 10 mM B + 10% G (Δ).