Enzyme-passage free culture of mouse embryonic stem cells on thermo-responsive polymer surfaces

Sabrina Dey, Barrie Kellam, Morgan R. Alexander, Cameron Alexander, Felicity R.A.J. Rose*

Supporting Information

Table S1: PCR primer sequences and RT-PCR details

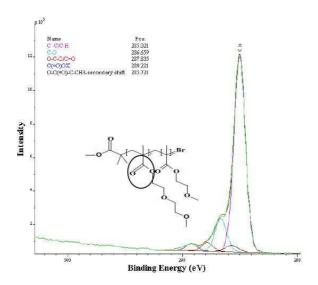

Gene	Cycle	Primer-Probe Sequence 5'-3'	Product	Annealing
	No.		Size (bp)	temp (°C)
GAPDH	30	F: TGAGGCCGGTGCTGAGTATGTCG	302	60
		R: CCACAGTCTTCTGGGTGGCAGTG		
Oct-4	30	F: AGCACGAGTGGAAAGCAACT	248	60
		R: AGATGGTGGTCTGGCTGAAC		
GATA4	30	F: CTGGAAGACACCCCAATCTC	130	55
		R: GTAGTGTCCCGTCCCATCTC		
Brachyury	30	F: GCTGTTGGGTAGGGAGTCAA	380	60
		R: CCCCGTTCACATATTTCCAG		
Nestin	30	F: AGGCGCTGGAACAGAGATT	150	55
		R: TTCCAGGATCTGAGCGATCT		

Table S2: Elemental compositions for plasma polymerised allyl alcohol (ppAAl) surfaces, ppAAl 2-bromo-isobutyrate surfaces and Poly (MEO₂MA-co-OEGMA) graft surfaces.

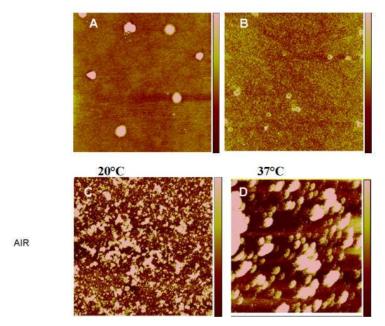
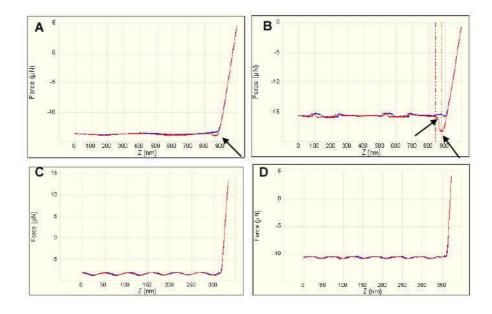
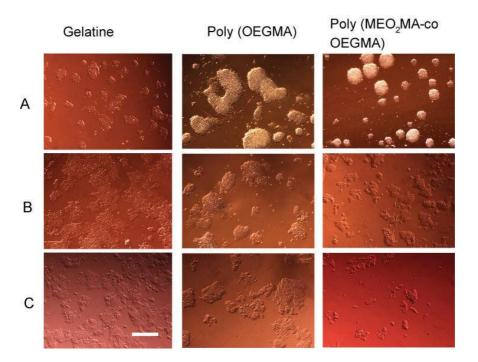
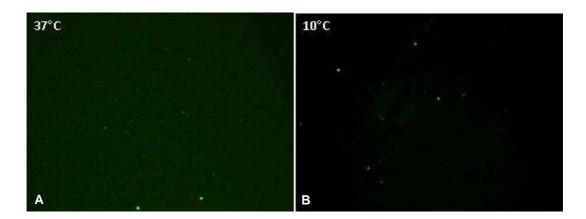
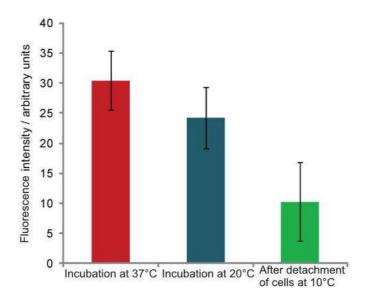

Assignments	Quantification (Atomic %)			
	ppAAl	ppAAl-2-bromo- isobutyrate	poly(MEO ₂ MA- co-OEGMA)	
C1s	85.2±0.1	85.05± 1.5	74.8±1.2	
O1s	14.8±0.3	12.3±1.11	18.44±0.8	
Si2p	-	1.2±0.3	-	
NaKLL	-	0.5 ± 0.05	0.7 ± 0.01	
Ca2p	-	-	1.6±0.2	
Zn2p	-	-	0.24 ± 0.3	
Br3d	-	0.7 ± 0.08	0.21±0.03	
Mg1s	-	-	4.01 ± 0.04	

Table S3: XPS C1s core level curve fit results for Poly (MEO₂MA-co-OEGMA) graft surfaces.


Assignments	Binding energy/eV	Quantification (atomic %)	Notes	
			Polymethacrylate	
C -C/C-H	285.021	77.4 ± 0.7	backbone	
O-C(=O)- <u>C</u> -CH ₃ -			End moun of	
secondary shift	285.721	2.9 ± 0.09	End group of	
C-O	286.659	13.4±0.46	poly(OEGMA)	
O-C-O/C=O	287.835	3.4±0.1		
$\underline{\mathbf{C}}(=\mathbf{O})\mathbf{OCH}_2$	289.221	2.9±0.08		


Figure S1: C1s core level spectra recorded after growth from the surface of poly(MEO₂MA-co-OEGMA) brushes via ATRP. Component peaks from the poly(methacrylate) backbone include C-C/C-H and <u>C(=O)OX</u> and the end group of poly(OEGMA).


Figure S2: (A) Plasma polymerised allyl alcohol (ppAAl). (B) bromo-isobutyryl bromide imaged using AFM in air. Representative AFM images of poly (MEO₂MA-co-OEGMA) grafted surface below (20°C) (C) and above (37°C) (D) the LCST in air (scan size: 5*5 μm², z-range: 10 nm).


Figure S3: Representative force distance curves obtained for ozone cleaned Si3 N4 AFM tip at poly (MEO₂MA-co-OEGMA) surfaces. At 20°C (A) low adhesion between tip and surface indicated by small pull-off trace (arrowed) in contrast to the higher pull-off force observed at 37°C. (B) PEOGMA control surfaces showed no adhesion between the AFM tip and the polymer layer as it has an LCST of 90°C, below (C) and above 37°C (D).

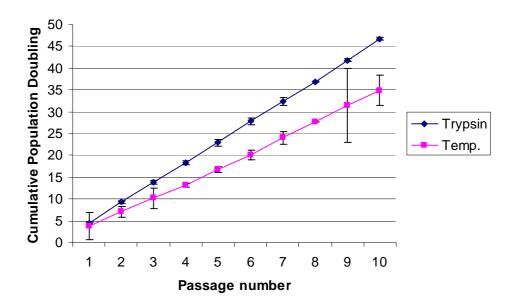

Figure S4: Feeder free mES cells attachment studies to Gelatine, poly(OEGMA) and poly(MEO₂MA-co-OEGMA). (A) Low attachment of mESCs to synthetic polymer surfaces and formation of embryoid bodies compared to gelatine (positive control). (B) mES cell attachment to poly(OEGMA) and poly(MEO₂MA-co-OEGMA) after treatment with fibronectin compared to gelatine. (C) Low detachment of cells from gelatine, partial retention of cells on poly(OEGMA) but reduced cell attachment to poly(MEO₂MA-co-OEGMA). Scale bar = $100\mu m$.

Figure S5: Representative fluorescence images of surfaces immuno-stained with fluorescent antibodies to fibronectin after incubation of fibronectin with poly(MEO₂MA-co-OEGMA) at 37°C overnight (A) and after detachment of cells at 10°C (B).

Figure S6: Averaged fluorescence intensities of poly(MEO₂MA-co-OEGMA) surfaces following incubation with fibronectin, washing and then immunostaining with a FITC-anti fibronectin antibody. Error bars represent SD and n=3

Figure S7: Growth curve of mESCs which were serially passaged using trypsin (\bullet) and temperature (\blacksquare) from gelatine coated TCPS (control) or the poly (MEO₂MA-co-OEGMA)/fibronectin thermoresponsive polymer surface respectively over 10 passage cycles (error bars indicate SD; n = 9, three individual samples in a total of three separate experiments)