Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (C) The Royal Society of Chemistry 2010

Supporting information for

Double Mesoporous Silica Shelled Spherical/Ellipsoidal Nanostructures: Synthesis and Hydrophilic/Hydrophobic Anticancer Drug Delivery

Yu Chen, Hangrong Chen, * Ming Ma, Feng Chen, Limin Guo, Lingxia Zhang and Jianlin Shi*

State Key of Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai

Institute of Ceramics, Chinese Academy of Science, Shanghai, 200050, P.R.China

To whom correspondence should be addressed: Tel.: 86-21-52412712. Fax: 86-21-52413122. Email:

jlshi@sunm.shcnc.ac.cn, hrchen@mail.sic.ac.cn

Experimental section

Synthesis of sSiO₂@mSiO₂ core/shell nanostructure using C₁₆TAB as structural directing agent: The synthetic procedure was according to previous reports (*J. Mater. Chem.*, 2007, *17*, 1758; *Colloids and Surface A: Physicochem. Eng. Aspects*, 2008, 313-314, 77).

Synthesis of $sSiO_2@mSiO_2$ core/shell nanostructure using C₁₈TMS as structural directing agent: Typically, 142.8 mL of ethanol, 20 mL of deionized water and 3.14 mL of ammonia solution were mixed and heated to 30°C. Then 6 mL of TEOS was added rapidly and the mixture were magnetically stirred for 1 h. Afterwards, 5 mL of TEOS and 2 mL of C₁₈TMS were then mixed and added into above mixture quickly, which was magnetically stirred for another 1 h (*ACS Nano*, 2010, *1*, 529; *Chem. Commu.*, 2009, 6071, *Adv. Mater.* 1998, *10*, 1036).

Synthesis of ellipsoidal Fe_2O_3 nanocrystals: Ellipsoidal Fe_2O_3 were synthesized by aging a solution containing 11.6 g of $Fe(ClO_4)_3 \cdot 6H_2O$, 1.5 g of urea and 0.16 g of NaH_2PO_4 dissolved in 250 mL of deionized water at 100 for 24 h. The product was collected by centrifugation and washed with water for 3 times. Then the sample was dried under vacuum at room temperature for further use (*ACS Nano*, **2010**, *1*, 529; *Angew. Chem. Int. Ed.*, **2008**, *47*, 5806).

Synthesis of FITC-HMSs@mSiO₂: FITC (15mg) was reacted with 3-aminopropyltriethoxysilane (APTES, 100 μL) in ethanol (5 mL) under dark conditions for 24 h. Subsequently, HMSs@mSiO₂ (20 mg) were reacted with FITC-APTES stock solution (1 mL) under dark conditions for 24 h. The FITC grafted particles were collected by centrifugation and washed with ethanol several times to remove the unreacted FITC-APTES. Finally, the FITC-HMSs@mSiO₂ were dried under vacuum at room temperature.

Synthesis of MCM-41 type mesoporous silica spheres: Typically, 0.28 g of NaOH was dissolved into 480 mL of H₂O under magnetic stirring at room temperature. Then 1 g of C₁₆TAB was added into above solution and the temperature of the mixture was raised to 80 \cdot 5 mL of TEOS was added dropwise to the solution under vigorous stirring. The reaction was continued for 2 h to give rise to a white precipitation. The product was collected by filtration and washed with deionized water and ethanol several times. After the sample was dried at 100 \cdot , the surfactant (C₁₆TAB) was removed by calcination in air at 600 for 6 h (*Microporous Mesoporous Mater.*, **2007**, *102*, 151).

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (C) The Royal Society of Chemistry 2010

Figure S1 N_2 adsorption-desorption isotherms (a) and corresponding pore size distributions (b) of HMSs and HMSs@mSiO₂.

Figure S2 Small angle X-ray diffraction pattern of HMSs@mSiO₂.

Figure S3 Small angle X-ray diffraction pattern of HMSs with single mesoporous shell.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (C) The Royal Society of Chemistry 2010

Figure S4 TEM images (a, b) of ellipsoidal Fe_2O_3 nanocrystals under different magnifications; High resolution TEM image (HRTEM, c) of Fe_2O_3 nanocrystals; (d) Selected area electron diffraction (SAED, d) of Fe_2O_3 nanocrystals.

Figure S5 TEM image (a, b) of $Fe_2O_3@mSiO_2$ before removing $C_{18}TMS$ under different magnifications.

Figure S6 Schematic illustration of the whole procedures for the preparation of various nanostructures with double mesoporous silica shells. (A) Double shelled homogeneous rattle-type silica spheres: Firstly, solid silica surface was coated by a layer of C_{18} TMS templated mesoporous silica shell (sSiO₂@mSiO₂). Then, the obtained sSiO₂@mSiO₂ nanoparticles were dispersed in 0.12 M ammonium solution and under hydrothermal treatment at 150 for 24 h to create the interstitial space between solid core and mesoporous shell. After adding C_{16} TAB into the reaction medium, the positively charged C_{16} TAB were absorbed onto the surface of rattle-type sSiO₂@mSiO₂. When the silica precursor was added, a mesoporous silica shell templated by C_{16} TAB was formed on the surface of rattle-type sSiO₂@mSiO₂. Finally, both C_{18} TMS and C_{16} TAB were removed by calcination under high temperature; (B) Double shelled ellipsoidal hollow mesoporous silica nanoparticles by employing ellipsoidal Fe₂O₃ as the morphology-deciding template: The coating of a

mesoporous silica shell onto the surface of ellipsoidal hollow mesoporous nanoparticles was similar to the process for HMSs@mSiO₂ and rattle-type mesoporous $sSiO_2@mSiO_2$; (C) Double shelled $Fe_2O_3/Fe_3O_4@SiO_2@mSiO_2$ nanostructure by using modified Stöber method and coating process of HMSs@mSiO_2; (D) Double shelled rattle-type mesoporous nanostructures with functional Fe_2O_3 (or Fe_3O_4) as the core and huge interstitial space between the core and shell: An ammonium etching process was employed to create the cavities between the core and shell, and modified Stöber method and coating process of HMSs@mSiO_2 were used for double mesoporous shell deposition.

Figure S7 Digital photographs of double-shelled $Fe_3O_4@SiO_2@mSiO_2$ nanostructure in water (left) and manipulated by external magnetic field (right).

Figure S8 TEM images of MCM-41 type mesoporous silica spheres under different magnifications.