## **Supporting Information**

# Direct nanoimprinting of metal oxides by *in situ* thermal co-polymerization of their methacrylates

Ramakrishnan Ganesan,<sup>\*</sup> Su Hui Lim, M. S. M. Saifullah,<sup>\*</sup> Hazrat Hussain, John X. Q. Kwok,<sup>‡</sup> Ryan Tse,<sup>‡</sup> Htoo A. P. Bo,<sup>‡</sup> Hong Yee Low

Institute of Materials Research and Engineering, A\*STAR (Agency for Science Technology and Research), 3 Research Link, Singapore 117602, Republic of Singapore

<sup>†</sup> NUS High School of Mathematics and Science, 20 Clementi Avenue 1, Singapore 129957, Republic of Singapore

<sup>\*</sup> Corresponding authors' email addresses: <u>saifullahm@imre.a-star.edu.sg</u>; <u>ganesanr@imre.a-star.edu.sg</u>

### Fe<sub>2</sub>O<sub>3</sub> Resin



**Figure S1.** Cross-sectional SEM images of (a) as-imprinted and (b) heat-treated patterns of  $Fe_2O_3$  resin using 250 nm line/space grating mold. The spin-coating speed of the resin was 3000 rpm. Notice the lack of cracking of the residual layer of thickness ~600 nm.

One of the interesting characteristics of  $Fe_2O_3$  resin is its ability to give crack-free residual layer at large film thickness [Figure S1].

XRD studies of heat-treated Fe<sub>2</sub>O<sub>3</sub> resin show that crystallization starts around 450 °C with sharp peaks of hematite phase appearing at 600 °C [Figure S2].



**Figure S2.** XRD data of Fe<sub>2</sub>O<sub>3</sub> resin heat-treated at various temperatures for 1 hour showing the formation of hematite phase (JCPDS Card No. 33-664).

#### ZrO<sub>2</sub> Resin



**Figure S3.** SEM images of (a) as-imprinted and (b) heat-treated patterns of  $ZrO_2$  resin using 200 nm dimple mold. The spin-coating speed of the resin was 6000 rpm.

The SEM images above [Figure S3) shows an array of dots imprinted using  $ZrO_2$  resin *without* diluting it in *n*-butanol in 1:1 volumertic ratio. It is interesting to note that although the asprepared imprint looks neat and devoid of cracks, its heat-treatment resulted in the appearance of cracks around the dots.



**Figure S4.** SEM image of heat-treated patterns of ZrO<sub>2</sub> resin (spin coated at 6000 rpm) using 100 nm line/space mold.

Similar observation was also made when line gratings were imprinted using a 100 nm mold. While no cracking was observed in the imprinted sample, the residual layer showed cracking after heat-treatment at 450 °C for 1 hour [Figure S4].

These observations necessitated further reduction of residual layer by diluting the  $ZrO_2$  resin in *n*-butanol in 1:1 volumertic ratio in order to obtain high quality imprints.

This brings us to the issue of how the residual layer in cross-section looks like for  $ZrO_2$  resin spin-coated at 3000 and 6000 rpms. The cross-section of the residual layer at these two spin speeds is shown in Figure S5. Notice the enormously thick residual layer obtained when the



resist was spun at 3000 rpm.

**(a)** 

(b)

**Figure S5.** Cross-sectional SEM images of as-imprinted patterns of  $ZrO_2$  resin using 250 nm line/space grating mold. The spin-coating speed of the resin was (a) 3000 rpm and (b) 6000 rpm. Notice the residual layer thicknesses of ~1800 nm and ~900 nm for the imprinted resin spin-coated at 3000 rpm and 6000 rpm, respectively.

#### TiO<sub>2</sub> Resin



**Figure S6.** Cross-sectional SEM image of as-imprinted patterns of  $TiO_2$  resin using 100 nm line/space grating mold. The spin-coating speed of the resin was 3000 rpm. A residual layer thickness of ~1200 nm was observed in this case.

#### Nb<sub>2</sub>O<sub>5</sub> Resin



**Figure S7.** SEM images of (a) as-imprinted and (b) heat-treated patterns of optimized  $Nb_2O_5$  resin composition with the molar ratio  $Nb(OEt)_5$ : EDMA:MMA = 1:1:2 using 250 nm line/space grating mold. The spin-coating speed of the resin was 3000 rpm.

Optimizing the composition of  $Nb_2O_5$  resin does not mean good quality lines after heat-treatment at 550 °C for 1 hour as seen in Figure S7. Here reduction of residual layer thickness by increasing the spin-speed to 6000 rpm eliminates cracking completely after heat-treatment.

#### Ta<sub>2</sub>O<sub>5</sub> Resin

#### Effect of Ta2O5 resin composition on imprintability

In case of  $Ta_2O_5$  resin, a composition of  $Ta(OBu)_5$ :EDMA=1:2.5, was studied for its imprintability [Figure S8]. As observed for the similar composition of Nb<sub>2</sub>O<sub>5</sub> resin,  $Ta_2O_5$  resin composition also showed excessive cracking in the residual layer. Since tantalum too is a pentavalent metal, this phenomenon may be attributed to the polymerization-induced shrinkage along five directions.



**Figure S8.** SEM images of (a) as-imprinted and (b) heat-treated patterns of Ta(OBu)<sub>5</sub>:EDMA= 1:2.5 resin using 250 nm line/space grating mold. The resin was spin-coated at a speed of 3000 rpm.

Reduction in residual layer thickness by spinning at 6000 rpm does not seem to change the cracking characteristics of the imprints.



**Figure S9.** SEM images of (a) as-imprinted and (b) heat-treated patterns of  $Ta(OBu)_5$ :EDMA:MMA = 1:1.0:2 resin using 100 nm line/space grating mold. The resin spin-coating speed was 6000 rpm.

However, optimizing Ta<sub>2</sub>O<sub>5</sub> resin in conjunction with lower residual layer thickness gave crack-free imprints after heat-treatment [Figure S9].