SUPPORTING INFORMATION

Synthesis and characterization of carboxylated polybenzimidazole and its use

as a highly sensitive and selective enzyme-free H₂O₂ sensor

Mu-Yi Hua,^{*a,b} Hsiao-Chien Chen,^{a,b} Rung-Ywan Tsai,^c Yann-Lii Leu,^d Yin-Chih Liu^{a,b} and Jinn-Tsyy Lai^e

^{*a*} Green Technology Research Center, *Department of Chemical and Materials Engineering, Chang Gung* University, Tao-Yuan 33302, Taiwan, R.O.C. Tel: +886-3-2118800; Fax: +886-3-2118668; E-mail: huamy@mail.cgu.edu.tw

^b Biosensor Group, Biomedical Engineering Research Center, *Chang Gung University, Tao-Yuan 33302, Taiwan, R.O.C.*

^c Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan, R.O.C.

^d Natural Products Laboratory, Graduate Institute of Natural Products, Chang Gung University, Tao-Yuan 33302, Taiwan, R.O.C.

^e Food Industry Research and Development Institute, Hsinchu 30062, Taiwan, R.O.C.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is The Royal Society of Chemistry 2011

Table S-1 Relative	percentages of N(1s)	peak areas for PBI.	, PBI-BA and PBI-BA N-oxide
			,

	Imine	Amine	N-substituted amine	Protonated imine	Oxidized imine
PBI	49%	51%	-	-	-
PBI–BA	44%	29.5%	20.5 %	6%	-
PBI–BA N-oxide	35%	29.5%	20.5 %	6%	9%

-: Data not available.

Fig. S-1 WAXS patterns of (a) PBI and (b) PBI-BA from $5-35^{\circ}$ at a scan rate of 1 °/min.

Fig. S-2 Linear relationships of (A) peak current *vs.* the square root of υ and (B) peak potential *vs.* the natural logarithm of υ for a PBI-BA/Au electrode at pH 7.0. (\blacksquare : 1st oxidation peak; \bullet : 1st reduction peak; \blacktriangle : 2nd oxidation peak; \lor : 2nd reduction peak)

Fig. S-3 CVs of a PBI-BA/Au electrode in the presence of (a) 0, (b) 1, (c) 3, and (d) 10 mM H_2O_2 .

Fig. S-4 Current response of a PBI-BA/Au electrode at an applied potential of -0.5 V using various stirring rates.

Fig. S-5 The FT–IR spectra of PBI-BA treated thermally at 100 °C for (a) 0, (b) 1, (c) 5, (d) 7 and (e) 10 days.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2011

Fig. S-6 The CVs of Gs/Au (a and b) and PBI-BA–Gs/Au (c and d) electrodes in the absence (a and c) and presence (b and d) of 1 mM H_2O_2 .