Supporting Information

Dye-Sensitized Bio-System Sensing Using Macroporous Semiconducting Oxides

Debraj Chandra, Makoto Bekki, Masako Nakamura, Shuji Sonezaki, Tatsuki Ohji, Kazumi Kato, and Tatsuo Kimura*

Fig. S1 Low-magnification SEM images of (a) TiO_2 (400 °C), (b) SnO_2 (450 °C) and (c) ZnO (400 °C) with (d, e, f) those of corresponding films calcined at 600 °C, and (g, h, i) XRD patterns of those calcined at 400–600 °C.

Fig. S2 Kr adsorption-desorption isotherms at 87 K of calcined macroporus films (at 400 °C) of (a) TiO_2 , (b) SnO_2 and (c) ZnO.

Fig. S3 Fluorescence due to DNA (Cy5-DP53t) and antibody (Cy5-NB013) over macroporous ZnO film calcined at 400 °C and generation of photocurrent based on the DSSC system related to sensor property.

Fig. S4 Adsorption of DNA molecule (Cy5-DP53t) over a wide range of porous films; TiO_2 films (calcined at 400 °C) prepared using (a) F127 alone, (b-e) F127 with 0.5, 1.0, 1.5 and 2.0 mL of 100 nm PS beads solution, those prepared using PS-*b*-PEO, followed by calcination at (f) 400 °C and (g) 250 °C, and (h) bare FTO substrate.

Fig. S5 Photocurrents generated from Cy5 attached to DNA (DP53t) molecules exited by 120 mW lights through a wide range of porous films; TiO₂ films (calcined at 400 °C) prepared using (a) F127 alone, (b-e) F127 with 0.5, 1.0, 1.5 and 2.0 mL of 100 nm PS beads solution, those prepared using PS-*b*-PEO, followed by calcination at (f) 400 °C and (g) 250 °C, and (h) bare FTO substrate.