Supporting Information

## Ternary PtSnRh-SnO<sub>2</sub> Nanoclusters: Synthesis and Electroactivity for Ethanol Oxidation Fuel Cell Reaction

Wenxin Du,<sup>†</sup>Qi Wang,<sup>§</sup> Carlo A. LaScala,<sup>†</sup> Lihua Zhang,<sup>‡</sup> Dong Su,<sup>‡</sup> Anatoly I. Frenkel,<sup>£</sup> Virendra K. Mathur<sup>†</sup> and Xiaowei Teng<sup>†\*</sup>

<sup>†</sup>Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824 <sup>§</sup>Department of Chemical Engineering, University of Delaware, Newark, DE 19716

<sup>‡</sup>Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973

<sup>£</sup>Department of Physics, Yeshiva University, New York, NY 10016 <sup>\*</sup> CORRESPONDING AUTHOR

E-mail: <u>xw.teng@unh.edu</u>



**Figure S1**. EDS spectra of as-made  $Pt_{52}Sn_{(36-x)}Rh_{12}-Sn_xO_{2x}$  /C,  $Pt_{36}Rh_{10}-Sn_{54}O_{108}/C$  and  $Pt_{30}Rh_{30}-Sn_{40}O_{80}/C$ ,  $Pt_{55}-Sn_{45}O_x/C$ , and  $Pt_{44}Rh_{56}/C$  carbon supported nanoparticles.



Figure S2. XRD patterns of as-made  $Pt_{52}Sn_{(36-x)}Rh_{12}-Sn_xO_{2x}$  /C,  $Pt_{36}Rh_{10}-Sn_{54}O_{108}/C$  and  $Pt_{30}Rh_{30}-Sn_{40}O_{80}/C$ ,  $Pt_{55}-Sn_{45}O_x/C$ ,  $Pt_{44}Rh_{56}/C$ , and Pt/C (ETEK) carbon supported



nanoparticles. The bottom lines (pink) represent the XRD pattern of tetragonal  $SnO_2$  from JCPDS database.

**Figure S3.** XANES and EXAFS spectra for three Pt/Sn/Rh catalysts:  $Pt_{52}Sn_{(36-x)}Rh_{12}-Sn_xO_{2x}$  /C,  $Pt_{36}Rh_{10}-Sn_{54}O_x/C$  and  $Pt_{30}Rh_{30}-Sn_{40}O_x/C$ : (a, b, c) Pt L3 edge; (d, e, f) Rh K edge; (g, h, l) Sn K edge. For k-space and R-space data,  $k^2$ -weighting is used for Pt L3 data and  $k^3$ -weighting for Rh K edge and Sn K edge.



**Figure S4**. Fourier transform magnitudes of EXAFS data of the (a, b, c) Pt  $L_3$  edge, (d, e, f) Rh K edge, (g, h, i) Sn K edge, for three carbon-supported Pt/Sn/Rh ternary catalysts.



Figure S5. CV curves of  $Pt_{52}Sn_{(36-x)}Rh_{12}$ - $Sn_xO_{2x}$  /C,  $Pt_{36}Rh_{10}$ - $Sn_{54}O_{108}$ /C,  $Pt_{30}Rh_{30}$ - $Sn_{40}O_{80}$ /C,

Pt<sub>55</sub>–Sn<sub>45</sub>O<sub>x</sub> /C, Pt<sub>44</sub>Rh<sub>56</sub>/C, and Pt/C (ETEK) in ethanol-containing acid solution.



Figure S6. IT curves of  $Pt_{52}Sn_{(36-x)}Rh_{12}-Sn_xO_{2x}$  /C,  $Pt_{36}Rh_{10}-Sn_{54}O_{108}$ /C,  $Pt_{30}Rh_{30}-Sn_{40}O_{80}$ /C,  $Pt_{55}-Sn_{45}O_x$  /C,  $Pt_{44}Rh_{56}$ /C, and Pt/C (ETEK) in ethanol-containing acid solution.



Figure S7. TEM images of carbon-supported (a)  $Pt_{30}Rh_{30}$ -Sn<sub>40</sub>O<sub>80</sub> and (b)  $Pt_{36}Rh_{10}$ -Sn<sub>54</sub>O<sub>108</sub> catalysts.