Supporting Information

Functionalization of MCM-41 and SBA-1 with Titanium(IV) (Silyl)Amides

Thomas Deschner,^a Bjørn-Tore Lønstad,^a Markus Widenmeyer,^b and Reiner Anwander^{a,b}*

^aKjemisk Institutt, Universitetet i Bergen, Allégaten 41, 5007 Bergen, Norway; ^bInstitut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany

Synthesis of the Periodic Apple of the Royal Society of Chemistry 2011

MCM-41. CTMABr (4.27 g, 11.71 mmol) and 5.51 g $C_{16\cdot3\cdot1}$ (10.39 mmol) were combined with distilled water (280.76 g, 15.60 mol) and 23.65 g TMAOH solution (64.88 mmol) and stirred for 30 minutes until a homogenous solution was achieved. Then TEOS (27.04 g, 129.78 mmol) was added and the resulting solution stirred for 40 minutes. The material was filtrated, re-suspended in 350 mL of distilled water, transferred into a Teflon autoclave and treated for 6 D at 100 °C. The solid product was recovered by filtration and dried at ambient temperature. The as-synthesized material was calcined at 540 °C (air, 5 h) and dehydrated in vacuo (270 °C, 10⁴ Torr, 8 h). The molar composition of the synthesis gel was 0.08:0.08: 120: 0.5:1 CTMABr: $C_{16\cdot3\cdot1}$:H₂O:TMAOH:TEOS.

SBA-1. C_{18} TEABr (5.70 g, 13.08 mmol), concentrated HCl (37 wt%, 362.9 g, 3.18 mol) and distilled water (598.5 g, 33.23 mol) were combined, and the resulting mixture vigorously stirred until a homogeneous solution formed (ca. 30 min). The solution was cooled to 0 °C in an ice bath and 13.68 g (65.67 mmol) of TEOS slowly added. Stirring was continued for 4 h at 0 °C, and then the reaction mixture heated in a polypropylene bottle to 100 °C and maintained there for 1 h without stirring. The solid product was recovered by filtration (without washing) and dried at ambient temperature. The assynthesized material was calcined at 540 °C (air, 5 h) and dehydrated in vacuo (270 °C, 10⁴ Torr, 8 h). The molar composition of the synthesis gel was 1:5:280:3500 C₁₈TEABr:TEOS:HCl:H₂O.

Figure S1. Powder XRD patterns of the parent materials: MCM-41 (1) (upper left), MCM-41 (2) (upper right), and SBA-1 (3) (bottom).

Figure S2. BJH pore size distribution of SBA-1 (3) (\blacksquare), SiMePh₂@ SBA-1 (3a) (\bullet) and Ti(NMe₂)₄@SiMePh₂@SBA-1 (3b) (\blacktriangle).

Figure S3. BJH pore size distribution of SBA-1 (3) (\blacksquare), Mg[N(SiHMe₂)₂]₂@SBA-1 (3c) (\bullet) and Ti(NMe₂)₄@ Mg[N(SiHMe₂)₂]₂@SBA-1 (3d) (\blacktriangle).

Figure S4. BJH pore size distribution of SBA-1 (3) (\blacksquare), Ti(NMe₂)₄@SBA-1 (3e) (\bullet) and (*R*-H₂BINOL)@Ti(NMe₂)₄@SBA-1 (3f) (\blacktriangle).

Figure S5. BJH pore size distribution of SBA-1 (3) (\blacksquare),Ti(NMe₂)₃[N(SiHMe₂)₂]@ SBA-1 (3g) (\bullet) and Ti(NMe₂)₃[N(SiHMe₂)₂]@SBA-1 (3h) (\blacktriangle).

Figure S6. IR spectra (DRIFT) of the hybrid materials $SiMePh_2@MCM-41$ (1a) and $Ti(NMe_2)_4@SiMePh_2@MCM-41$ (1b) and precursor $Ti(NMe_2)_4$ in the range of 400-4000 cm⁻¹.

Figure S7. IR spectra (DRIFT) of the hybrid materials $Ti(NMe_2)_3[N(SiHMe_2)_2]@MCM-41$ (**1c**) and precursor $Ti(NMe_2)_3[N(SiHMe_2)_2]$ (**4**) in the range of 1300-4000 cm⁻¹.

Figure S8. IR spectra (DRIFT) of the hybrid materials $Ti(NMe_2)_4@MCM-41$ (2a) and (*R*-H₂BINOL)@Ti(NMe₂)₄@MCM-41 (2b) and precursor $Ti(NMe_2)_2(R-BINOL)$ (5) in the range of 1300-4000 cm⁻¹.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S9. IR spectra (DRIFT) of the hybrid materials $SiMePh_2@SBA-1$ (3a) and $Ti(NMe_2)_4@SiMePh_2@SBA-1$ (3b) and precursor $Ti(NMe_2)_4$ in the range of 400-4000 cm⁻¹ and 1300-4000 cm⁻¹.

Figure S10. IR spectra (DRIFT) of the hybrid materials $Mg[N(SiHMe_2)_2]_2@SBA-1$ (3c) and $Ti(NMe_2)_4@Mg[N(SiHMe_2)_2]_2@SBA-1$ (3d) and precursor $Ti(NMe_2)_4$ in the range of 400-4000 cm⁻¹.

Figure S11. IR spectra (DRIFT) of the hybrid materials $Ti(NMe_2)_4@SBA-1$ (**3e**) and (*R*-H₂BINOL)@Ti(NMe₂)₄@SBA-1 (**3f**) and precursor $Ti(NMe_2)_2(R$ -BINOL) (**5**) in the range of 400-4000 cm⁻¹

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S12. IR spectra (DRIFT) of the hybrid materials $Ti(NMe_2)_3[N(SiHMe_2)_2]@SBA-1$ (3g) and $Ti(NMe_2)_3[N(SiHMe_2)_2]@SBA-1$ (3h) and precursor $Ti(NMe_2)_3[N(SiHMe_2)_2]$ (4) in the range of 400-4000 cm⁻¹.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is (c) The Royal Society of Chemistry 2011

Figure S13. IR spectra (DRIFT) of the parent materials MCM-41 (1), MCM-41 (2) and SBA-1 (3) in the range of 400-4000 cm⁻¹.

Figure S14. IR spectrum (DRIFT) of $\{Mg[N(SiHMe_2)_2]_2\}_2$ in the range of 400-4000 cm⁻¹.

Figure S15. ¹H NMR spectrum (600.13 MHz) of R-H₂BINOL in C₆D₆.

Figure S16. ¹H NMR spectrum (600.13 MHz) of R-H₂BINOL in C₆D₆.

Figure S17. ¹H NMR spectrum (600.13 MHz) of $Ti(NMe_2)_2(R-BINOL)$ (5) in C_6D_6 .

Figure S18. ¹H NMR spectrum (400.13 MHz) of $Ti(NMe_2)_3[N(SiHMe_2)_2]$ (4) in C_6D_6 .

Figure S19. ¹³C NMR spectrum (100.61 MHz) of $Ti(NMe_2)_3[N(SiHMe_2)_2]$ (4) in C_6D_6 .

Figure S20. ¹H NMR spectrum (400.13 MHz) of $Ti(NMe_2)_4$ in C_6D_6 .

Figure S21. ¹³C NMR spectrum (100.61 MHz) of $Ti(NMe_2)_4$ in C_6D_6 .

Figure S22. ¹H NMR spectrum (600.13 MHz) of $\{Mg[N(SiHMe_2)_2]_2\}_2$ in C₆D₆.

240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 (ppm)

Figure S23. ¹³C NMR spectrum (100.61 MHz) of $\{Mg[N(SiHMe_2)_2]_2\}_2$ in C_6D_6 .