
Supporting Information

Porous monodisperse V_2O_5 microspheres as cathode materials for lithium-ion batteries

Suqing Wang, ^{†‡,} Zhenda Lu, [†] Da Wang, [‡] Chunguang Li, [†] Chunhua Chen^{*‡} and Yadong Yin^{*†}

[†]Department of Chemistry, University of California, Riverside, CA 92521, [‡]Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui, China, 230026

*To whom correspondence should be addressed. Emails: <u>cchchen@ustc.edu.cn</u> (C.C.); <u>yadong.yin@ucr.edu</u> (Y.Y.)

Figure S1. TEM images of VOPs precursor with size of (a) 450 nm, (b) 700 nm; (c, d) their corresponding V_2O_3 phases obtained after hydrogen treatment; and their corresponding V_2O_5 phases obtained after oxidation (e, f).

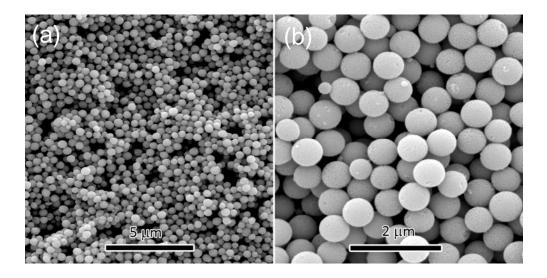
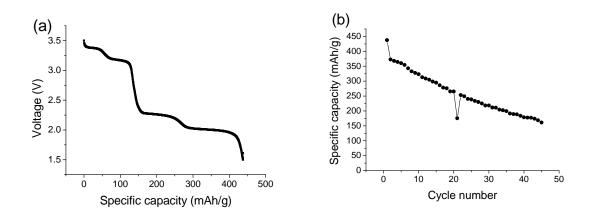
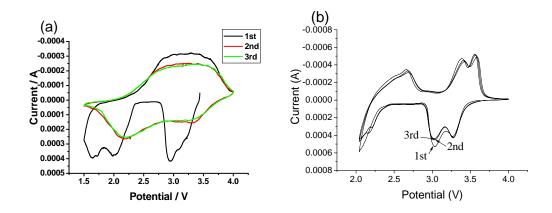




Figure S2. SEM images of the V_2O_5 porous spheres with particle size of ~450 nm (a), and ~700 nm (b).

Figure S3. Galvanostatic cycling results of monodisperse porous V_2O_5 microspheres in the range of 1.5-4.0 V: (a) first discharge curve at the voltage range of 1.5-4.0 V, (b) cycling performance.

Supplementary Material (ESI) for Journal of Materials Chemistry This journal is © The Royal Society of Chemistry 2011

Figure S4 CV curves (first three cycles) of monodisperse porous V_2O_5 microspheres in the voltage range of 1.5-4.0 V (a), 2.05-4.0 V (b).