Supporting Information

## Enhanced photovoltaic performance of polymer solar cells by adding fullerene end-capped polyethylene glycol

Qidong Tai<sup>*a,b*</sup>, Jinhua Li<sup>*a*</sup>, Zhike Liu<sup>*a*</sup>, Zhenhua Sun<sup>*a*</sup>, Xingzhong Zhao<sup>*b*</sup>, and Feng YAN<sup>\**a*</sup>

<sup>a</sup> Department of Applied Physics The Hong Kong Polytechnic University, Kowloon, Hong Kong (China) E-mail: apafyan@polyu.edu.hk

<sup>b</sup> KeyLaboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology Wuhan University, Wuhan 430072 China



Figure S1. <sup>1</sup>HNMR (CDCl<sub>3</sub>) spectra of PEG and PCBPEG



**Figure S2.** TEM images of the pure (a),(b) P3HT/PCBM blend film (c),(d) 5%PCBPEG modified film prior to thermal annealing and the (e) 5% PEG modified film annealed at  $150^{\circ}$ C for 2h.



**Figure S3**. TEM image of a P3HT/PCBM blend film. The high resolution image shows parallel lattice planes of a PCBM crystallite in dark region. The distance between the neighboring planes is ~ 0.45nm, which is similar to the value reported before [Y. Kim *et al. ACS Nano*, **3**, 2557-2562 (2009)].