Hierarchical Porous Carbonaceous Materials via Ionothermal Carbonization of Carbohydrates

By Zai-Lai Xie¹, Robin J. White², Jens Weber², Andreas Taubert^{1,2},* and Magdalena M Titirici²*

- 1. Institute of Chemistry, University of Potsdam, 14476 Potsdam
- 2. Max-Planck-Institute of Colloids and Interfaces, D-14476 Golm.

Supplementary Materials

Samples	Specific area [m ² g ⁻¹]	Total porosity [%]	P _{density} [g cm ⁻³]
C-Glucose	76.1	92.4	0.11
C-Fructose	27.3	48.9	0.57
C-Xylose	76.6	83.2	0.30
C-Starch	52.3	60.6	0.44

Table S1: Macropore information obtained from Hg intrusion measurement.

Fig S1. TGA curves of (A): all ionothermal carbons at N_2 atmosphere; (B) all post-carbonized materials at O_2 atmosphere.

Figure S2: TEM micrographs of carbon materials after carbonization at 750 °C under N₂; (A) *C*-Glucose, (B) *C*-Fructose, (C) *C*-Xylose and (D) *C*-Starch.

Figure S3. Yield of glucose and fructose to carbon in H_2O and [Bmim][FeCl₄] (Left) and the results of recycling of [Bmim][FeCl₄] for D-Glucose (right). A comparative experiment using the IL without Fe ([Bmim]Cl) was also tried for Glucose. The yield based on carbon is 50%.

Figure S4. SEM micrographs of carbon materials from fructose. (a) 1st run, (b) 2 nd run.

Figure S5. PSD of the post carbonized materials, extracted from CO₂ adsorption isotherms (@273K) by the GCMC model; blue: *C*-Glucose-750; red: *C*-Fructose-750; red: *C*-Xylose-750; orange: *C*-Starch-750;