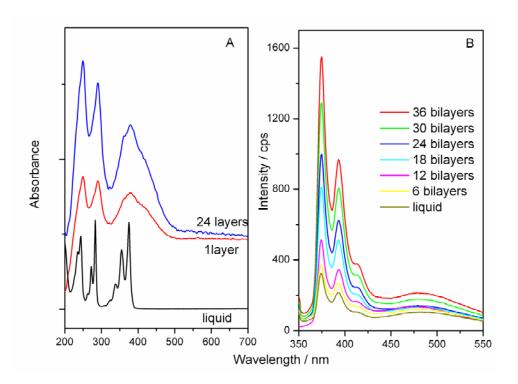
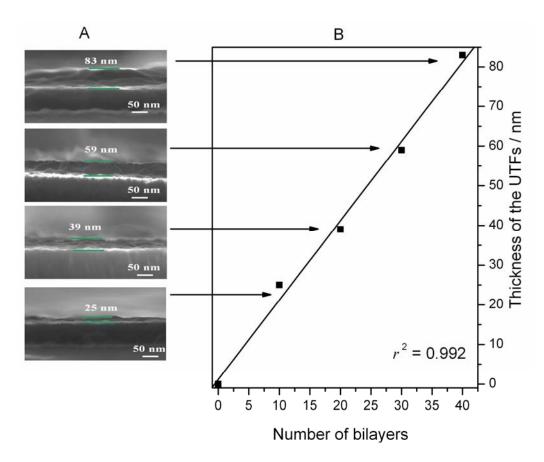
Electronic Supplementary Information for

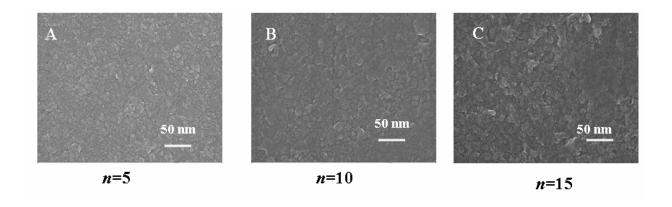
Fabrication of Pyrenetetrasulfonate/Layered Double Hydroxide

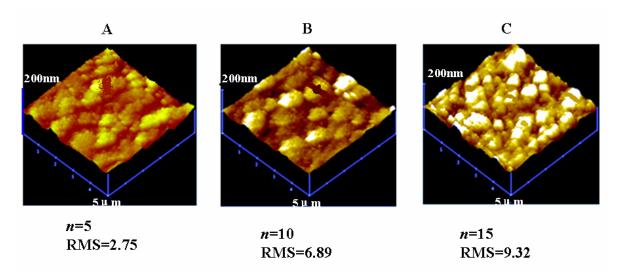

Ultrathin Films and their Application in Fluorescence Chemosensors

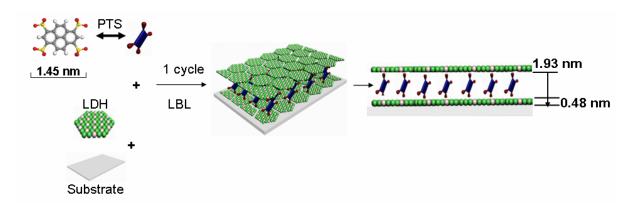
Wenying Shi, Yanjun Lin, Xianggui Kong, Shitong Zhang, Yankun Jia, Min Wei,* David G. Evans and Xue Duan


State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China

CORRESPONDING AUTHOR FOOTNOTE


* Corresponding author. Phone: +86-10-64412131. Fax: +86-10-64425385. E-mail: weimin@mail.buct.edu.cn.


Figure S1. (A) The UV-vis absorption spectra and (B) emission spectra of the pristine PTS in solution and PTS/LDH UTFs.


Figure S2. (A) Side-view of SEM images for the $(PTS/LDH)_n$ UTFs with n=10, 20, 30 and 40 respectively; (B) thickness of these UTFs vs. n.

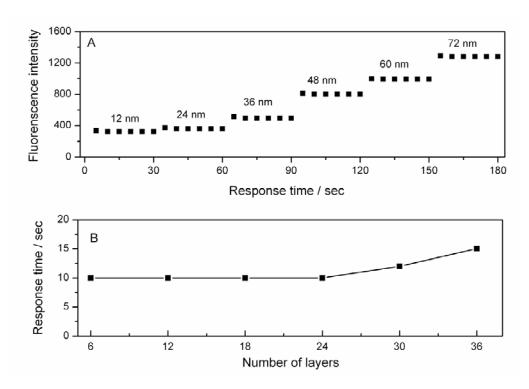

Figure S3. Top-view of SEM images of the $(PTS/LDH)_n$ UTFs for (A) n = 5, (B) n = 10 and (C) n = 15.

Figure S4. AFM images of the $(PTS/LDH)_n$ UTFs for (A) n = 5, (B) n = 10 and (C) n = 15.

Figure S5. Schematic representation for an ideal assembly and structure of PTS/LDH UTF (Zn green, Al pink, H white, S yellow, O red, C grey).

Figure S6. (A) Response time of the chemosensor for Cu^{2+} (0.2 μ M) with different film thickness. The interval time of each measurement is 5 s. The excitation wavelength is 340 nm and monitor wavelength is 375 nm. (B) Correlation between the response time and n.

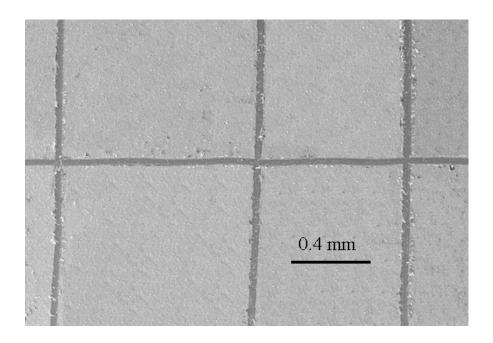


Figure S7. SEM image of the (PTS/LDH)₂₄ UTF tested for adhesion to the substrate.

Table S1: Fluorescence Decay Data of PTS in Solution and the (PTS/LDH)_n UTFs.

				/11	
n	x	$\tau_i(\mathrm{ns})$	$A_i(\%)$	<τ> (ns)	Chi ²
6	2	128.6	46.6	113.5	1.55
		100.3	53.4		
12	2	108.6	40.4	116.3	1.14
		121.5	59.6		
18	2	106.9	56.4	120.4	1.25
		137.9	43.6		
24	2	130.5	43.9	128.6	1.36
		127.1	56.1		
30	2	124.3	41.9	120.1	1.54
		117.1	58.1		
PTS solution	1	00.2	100	80.2	1.32
$/10^{-5}$ mol/L		80.2	100		
(PTS/LDH) ₂₄ -Cu ²⁺	2	130.5	52.3	127.3	1.52
		123.8	47.7		
-					

n is the number of bilayer; *x* is the series of exponential fit; τ_i is the fluorescence lifetime; A_i is the preexponential factor related with the statistical weights of each exponential; $\langle \tau \rangle$ is the intensity average lifetime. The goodness of fit is indicated by the value of Chi².