Electronic Supplementary Information

Iridium-Platinum Alloy Nanoparticles: Composition-Dependent Electrocatalytic Activity for Formic Acid Oxidation

Wei Chen^{*†} and Shaowei Chen^{*‡}

[†] State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China [‡]Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064 USA

Figure S1. UV-visible spectra of Ir_xPt_{100-x} nanoparticles (x = 100 to 0). All the particle concentrations are 0.1 mg/mL in CH₂Cl₂. For the IrCl₃ and PtCl₂ precursors, the concentrations are 1 mM in water.

^{*} To whom all correspondence should be addressed. E-mail: weichen@ciac.jl.cn; shaowei@ucsc.edu

Figure S2. Complex-plane electrochemical impedance plots (Nyquist plots) of the $Ir_{75}Pt_{25}/Au$ electrode in 0.1 M HCOOH + 0.1 M HClO₄ at various electrode potentials.

Figure S3. Complex-plane electrochemical impedance plots (Nyquist plots) of the $Ir_{67}Pt_{33}/Au$ electrode in 0.1 M HCOOH + 0.1 M HClO₄ at various electrode potentials.

Figure S4. Complex-plane electrochemical impedance plots (Nyquist plots) of the $Ir_{34}Pt_{66}/Au$ electrode in 0.1 M HCOOH + 0.1 M HClO₄ at various electrode potentials.