Electronic Supplementary Information

Highly Efficency Triarylene Conjugation Contains subsitution groups for Dye-Sensitized Soalr Cells

Yuan Jay Chang^{*a*} and Tahsin J. Chow^{*b*}*

^aDepartment of Chemistry, National Taiwan University, Taipei 106, Taiwan; ^bInstitute of Chemistry, Academia Sinica, Taipei 115, Taiwan

Contents

1.	The synthesis of compound 1	2-4
2.	¹ H and ¹³ C NMR spectra	5-21
3.	Infrared spectra	22
4.	Theoretical calculation	23-25
5.	Loading amount	26
6.	HOMO-LUMO level	26
7.	EIS spectra	27

1. The synthesis of compound 1

General Information

All reactions and manipulations were carried out under a nitrogen atmosphere. Solvents were distilled freshly according to standard procedures. ¹H and ¹³C NMR spectra were recorded on Brucker (AV 400/AV 500 MHz) spectrometer in CDCl₃, THF-d₈, and DMSO-d₆ as a solvent. Chemical shifts are reported in scale downfield from the peak for tetramethylsilane. Absorption spectra were recorded on a Jasco-550 spectrophotometer. Emission spectra and photoluminescence quantum yield were obtained from a Hitachi F-4500 spectrofluorimeter. The emission spectra in solutions were measured in spectral grade solvent by a 90° angle detection, and those of thin film were recorded by front-face detection. The redox potentials were measured by using cyclic voltammetry on CHI 620 analyzer. All measurements were carried out in THF solutions containing 0.1 M tetrabutylammonium hexaflourophosphate (TBAPF₆) as supporting electrolyte at ambient condition after purging 10 minutes with N_2 . The conventional three electrode configuration was employed, which consists of a glassy carbon working electrode, a platinum counter electrode, and a Ag/Ag⁺ reference electrode calibrated with ferrocene/-ferrocenium (Fc/Fc⁺) as an internal reference. Mass spectra were recorded on a VG70-250S mass spectrometer. Elementary analyses were performed on a Perkin-Elmer 2400 CHN analyzer.

All chemicals were purchased from ACROS, Merck, Lancaster, TCI, Sigma-Aldrich, separately, and purified before use. Chromatographic separations were carried out by using silica gel from Merk, Kieselgel si $60 (40 - 63 \mu m)$.

Scheme S1. The synthetic route of 1.

2-Methyl-5-nitrobenzonitrile (S1)

A mixture of fuming nitric acid (10 mL) and sulphuric acid (20 mL) in a two-necked flask was stirred at room temperature for 1 h. To it was added *o*-tolunitrile (9 mL, 76.8 mmol) slowly in an ice-bath, then the mixture was stirred for 1 hour at room temperature. The resulted solution was poured into ice-water, and the white solids were collected by filtration. Compound **S1** was purified by recrystallization from ethanol in 90% yield (11.2 g, 69.12 mmol). Spectroscopic data of **S1**: $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.46 (d, 1H, J = 2.4 Hz), 8.33 (dd, 1H, J = 2.4, 8.4 Hz), 7.53 (d, 1H, J = 8.8 Hz), 2.68 (s, 3H); $\delta_{\rm C}$ (100 MHz,CDCl₃) 149.2, 146.1, 131.5, 127.5, 127.2, 115.9, 114.2, 20.8; m/z (EI) 162.0425 (M⁺, C₈H₆N₂O₂ requires 162.0429).

5-Amino-2-methylbenzonitrile (S2)

A mixture of compound **S1** (5 g, 30.8 mmol) and Zn powder (7.5 g, 114.7 mmol) in methanol (200 mL) was placed in a three-necked flask and was stirred at room temperature for 4 h under a nitrogen atmosphere. The reaction was quenched by adding 0.1 N NaOH_(aq), then was extracted with ethyl acetate. The organic layer was dried over anhydrous MgSO₄ and evaporated under vacuum. The products were purified by silica gel column chromatograph eluted with dichloromethane. Yellow solids of **S2** were obtained in 85% yield (3.46 g, 26.18 mmol). Spectroscopic data of **S2**: $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.03 (d, 1H, J = 8.5 Hz), 6.84 (d, 1H, J = 2.5 Hz), 6.76 (dd, 1H, J = 2.5, 8.0 Hz), 3.68 (br, s, 2H), 2.39 (s, 3H); $\delta_{\rm C}$ NMR (100 MHz, CDCl₃) 144.4, 131.3, 130.9, 119.6, 118.3, 117.7, 112.9, 19.2; m/z (EI) 132.0687 (M⁺, C₈H₈N₂ requires 132.0687).

5-Bromo-2-methylbenzonitrile (S3)

A mixture of compound **S2** (3 g, 22.65 mmol), water (36 mL) and 48% HBr (10.8 mL) was stirred for 2 h. To it was then added an aqueous solution (20.3 mL) of NaNO₂ (17.1 g, 2.7 mmol), followed by CuBr (9.75 g, 67.65 mmol) after 30 mins. To the mixture was again added a combined solution of 48% HBr (22.5 mL) and water (54 mL) at 70 °C in a period of 30 mins. Then the mixture was heated to reflux for 2 h. After being cooled, the reaction was quenched by adding KOH_(aq), then was extracted with ethyl acetate. The organic layer was dried over anhydrous MgSO₄ and evaporated under vacuum. The products were purified by silica gel column chromatograph eluted with dichloromethane/hexane (1/1). Colorless crystalline solids of **S3** were obtained in 56% yield (2.47 g, 12.68 mmol). Spectroscopic data of **S3**: $\delta_{\rm H}$ (CDCl₃) 7.7 (d, 1H, J = 2.0 Hz), 7.59 (dd, 1H, J = 2, 8.4 Hz), 7.19 (d, 1H, J = 8.0 Hz), 2.49 (s, 3H); $\delta_{\rm C}$ (CDCl₃) 140.8, 135.7, 134.7, 131.7, 119.2, 116.6, 114.5, 19.9; m/z (EI)

194.9682 (M⁺, C₈H₆BrN requires 194.9684).

5-Bromo-2-(bromomethyl)benzonitrile (S4)

A mixture of compound **S3** (1 g, 5.13 mmol), NBS (1.0 g, 5.64 mmol), and BPO (40 mg, 0.165 mmol) was dissolved in CCl₄ (20 mL), then the solution was heated to 90 °C with stirring for 9 h. After cooling, the reaction was quenched by adding water, then was extracted with dichloromethane. The organic layer was dried over anhydrous MgSO₄ and evaporated under vacuum. The products were purified by silica gel column chromatograph eluted with ethyl acetate/hexane (1/9). White solids of **S4** were obtained in 90% yield (1.26 g, 4.62 mmol). Spectroscopic data of **S4**: $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.78 (d, 1H, J = 2.0 Hz), 7.71 (dd, 1H, J = 2, 8.4 Hz), 7.42 (d, 1H, J = 8.4 Hz), 4.57 (s, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 140.0, 136.4, 135.5, 131.8, 122.4, 115.2, 114.0, 28.3; m/z (EI) 272.8793 (M⁺, C₈H₅Br₂N requires 272.8789).

5-Bromo-2-formylbenzonitrile (1)

The solution of trimethylamine N-oxide (1.1 g, 14.64 mmol) in DMSO (8 mL) was kept in an ice bath, and to it was added dropwise compound **S4** (1.0 g, 3.66 mmol) in dry CH₂Cl₂, and the resulted solution was warm to room temperature and stirred with a magnetic bar for 8 h. The reaction was quenched by adding saturated NaCl_(aq), then was extracted with ethyl acetate. The organic layer was dried over anhydrous MgSO₄ and evaporated under vacuum. The products were purified by silica gel column chromatograph eluted with dichloromethane. White solids of **1** were obtained in 56% yield (428 mg, 2.05 mmol). Spectroscopic data of **1**: $\delta_{\rm H}$ (400 MHz, CDCl₃) 10.30 (s, 1H), 7.97 (s, 1H), 7.91 (s, 2H); $\delta_{\rm C}$ (100 MHz, CDCl₃) 187.4, 136.7, 136.6, 135.4, 130.56, 129.3, 115.3, 114.5; *m/z* (EI) 208.9477 (M⁺, C₈H₄BrNO requires 208.9476).

2. ¹H and ¹³C NMR spectra

Figure S1: ¹H NMR (upper) and ¹³C NMR (lower) spectra of S1 in CDCl₃.

1.00

1.00

1 ppm

Figure S5: ¹H NMR (upper) and ¹³C NMR (lower) spectra of 1 in CDCl₃.

Figure S6: ¹H NMR (upper) and ¹³C NMR (lower) spectra of 2 in CDCl₃.

Figure S7: ¹H NMR (upper) and ¹³C NMR (lower) spectra of 3 in CDCl₃.

Figure S12: ¹H NMR (upper) and ¹³C NMR (lower) spectra of 4-OCH₃ in CDCl₃.

Figure S15: ¹H NMR (upper) and ¹³C NMR (lower) spectra of PSP-CN in DMSO-*d*₆.

Figure S16: ¹H NMR (upper) and ¹³C NMR (lower) spectra of **PSP-CF₃** in DMSO-*d*₆.

Figure S17: ¹H NMR (upper) and ¹³C NMR (lower) spectra of PSP-OCH₃ in DMSO-*d*₆.

3. Infrared spectra

Figure S18. The IR spectra of PSP-CN (Left: neat; Right: dye on TiO₂ film).

Figure S19. The IR spectra of PSP-CF₃ (Left: neat; Right: dye on TiO_2 film).

4. Theoretical calculation

dye	state	excitation ^a	λ _{cal} (eV, nm)	f ^b B3LYP/631G*	HOMO/LUMO
	S 1	99.40% H→L	2.26(550)	0.7740	
N-PSP	S2	71.30% H-1→L	3.08(402)	0.7722	-5.12/ -2.63
	S 3	54.90% H-1→L	3.20(388)	0.0913	
	S 1	99.18% H→L	2.28(554)	0.8956	
PSP-H	S2	70.86% H→L+1	3.04(404)	0.6274	-4.96/ -2.47
	S 3	62.41% H-1→L	3.14(395)	0.1592	
	S 1	99.26% H→L	2.25(550)	0.8884	
PSP-F	S2	77.40% H-1→L	3.04(408)	0.6846	-5.02/ -2.55
	S 3	64.74% H→L+1	3.16(392)	0.1256	
	S 1	99.52% H→L	2.06(600)	0.7257	
PSP-CN	S2	92.46% H-1→L	2.90(427)	0.6711	-5.10/ -2.84
	S 3	51.34% H→L+1	3.13(396)	0.1800	
	S 1	99.48% H→L	2.13(582)	0.8416	
PSP-CF ₃	S2	90.38% H-1→L	2.94(422)	0.6589	-5.02/ -2.69
	S 3	65.35% H→L+1	3.15(393)	0.1248	
	S 1	98.88% H→L	2.37(523)	0.9994	
PSP-OCH ₃	S2	49.85% H→L+1	3.07(494)	0.4682	-4.96/ -2.36
	S 3	46.06% H-1→L	3.14 (395)	0.3173	

 Table S1. Calculated Low-Lying Transition for dyes.

^{*a*}H=HOMO, L=LUMO, H+1=HOMO+1, L+1=LUMO+1, and L+2=LUMO+2. ^{*b*}Oscillator strengths.

Table S2. Difference of Mulliken charges between ground state (S_0) and excited state (S_1), estimated by time dependent DFT/B3LYP model.

dye	D	В	Α
N-PSP	0.73091	-0.26014	-0.47078
PSP-H	0.69312	-0.23877	-0.45435
PSP-F	0.70760	-0.27141	-0.43619
PSP-CN	0.75501	-0.30760	-0.44741
PSP-CF3	0.72077	-0.26813	-0.45263
PSP-OMe	0.66031	-0.26239	-0.39792

Difference of Mulliken charge between ground state and excited state.

Figure S20. Bar-chart plots foe the difference of Mulliken charge listed in Table S2.

Figure S21. Computed HOMO and LUMO orbitals of PSP- series compounds.

Figure S22. Computed dihedral angles of PSP-series.

5. Loading amount

Figure S23. Loading amount of organic dyes on TiO₂ film.

6. HOMO-LUMO level

Figure S24. HOMO - LUMO energy levels of PSP-series.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2011

7. EIS spectra

Figure S25. Impendance spectra of **PSP**-series organic dyes at -0.73 V bais in the dark. (upper) Nyquist plots; (lower) Bode phase plots.