
Supporting Information

N-doping of thermally polymerizable fullerenes as an Electron **Transporting Layer for Inverted Polymer Solar Cells**

Namchul Cho, Hin-Lap Yip, Steven K. Hau, Kung-Shih Chen, Tae-Wook Kim, Joshua A. Davies, David 5 F. Zeigler, and Alex K. -Y. Jen*

Received (in XXX, XXX) Xth XXXX 2010, Accepted Xth XXXX 2010 First published on the web Xth XXXXXXXX 2010

DOI: 10.1039/b000000x

10 Figure S1. Cyclic voltammograms of P-PCBM-S films on ITO glass in a 0.1 M solution of TBAPF₆ in acteonitrile scanned at a rate of 100 mV/s.

Table S1. Electronic structure parameters of P-PCBM-S film

material	Ionization	Electron affinity	$E_g^{el} (eV)^c$	$E_g^{\text{opt}} (eV)^d$
	potential ^a (eV)	^b (eV)		
P-PCBM-S	5.96 (5.81) ^e	3.67	2.29	2.14

¹⁵ Determined from the onset oxidation potential. ^bDetermined from the onset reduction potential. ^c Electrochemical bandgap $E_g^{el} = ionization potential - electron affinity.^d$ Optical bandgap E_g^{opt} estimated from the optical absorption-onset of P-PCBM-S thin films. ^e Determined from ionization potential = electron affinity + E_g^{opt} .