Supporting Information

2,3,9,10,16,17,23,24-Octakis(hexylsulfonyl)phthalocyaninato Metal Complexes with Good *n*-Type Semiconducting Properties. Synthesis, Spectroscopic, and Electrochemical Characteristics

Yi Zhang, Pan Ma, Peihua Zhu, Xianyao Zhang, Yingning Gao, Dongdong Qi, Yongzhong Bian,* Nagao Kobayashi, and Jianzhuang Jiang*

Preparation of 4,5-di(hexylthio)phthalonitrile. А mixture of 4,5-dichlorophthalonitrile (1.039 g, 5.27 mmol) and hexanethiol (1.418 g, 12 mmol) in DMF (10 mL) was heated to 100°C, then dry K₂CO₃ (14.57 g) was added in 5 portions over 1 h. The resulting mixture was heated at 100°C under stirring for 12 h. After being cooled to room temperature, the mixture was poured in water (30 mL) and extracted with chloroform (30 mL x 3). The organic phase was combined and dried with anhydrous Na₂SO₄. After being evaporated, the purple oil obtained was then applied on a silica gel column with *n*-hexane/chloroform (1:1) as the eluent. Repeated chromatography followed by recrystallization from CHCl₃ and MeOH gave pure target product as yellow-green powder (0.803 g, 65%). Mp: 72°C. ¹H NMR (CDCl₃, 400 MHz): δ 7.42 (s, 2H, arom H), 3.00-3.04 (t, $SCH_2CH_2CH_2CH_2CH_3$, 0.92 (t, 6H, $SCH_2CH_2CH_2CH_2CH_2CH_3$). 12H. (m, MALDI-TOF MS: an isotopic cluster peaking at m/z 361.1, Calcd. for C₂₀H₂₈N₂S₂: [M]⁺ 360.5. Anal. Calcd. For C₂₀H₂₈N₂S₂: C, 66.62; H, 7.83; N, 7.77; found: C, 66.77; H, 8.08; N, 7.38.

Preparation of 2,3,9,10,16,17,23,24-octakis(hexylthio)phthalocyanine $H_2Pc(SC_6H_{13})_8$ by cyclic tetramerization of di(hexylthio)phthalonitrile. A mixture of di(hexylthio)phthalonitrile (59.5 mg, 0.16 mmol) and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.1 mL) in *n*-pentanol (2 mL) was heated to reflux for 5 h under nitrogen. After being cooled to room temperature, the mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on a silica gel column using CHCl₃ as the eluent. A green band containing the target compound was collected. Repeated chromatography followed by recrystallization from CHCl₃ and MeOH gave pure $H_2Pc(SC_6H_{13})_8$ as green powder (7.8 mg, 13.2%).

Preparation of 2,3,9,10,16,17,23,24-octakis(hexylthio)phthalocyaninato copper complex Cu[Pc(SC₆H₁₃)₈] by cyclic tetramerization of di(hexylthio)phthalonitrile. A mixture of di(hexylthio)phthalonitrile (50 mg, 0.14 mmol), Cu(CH₃COO)₂·H₂O (15 mg, 0.07 mmol), and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) (0.1 mL) in *n*-pentanol (5 mL) was heated at 120°C for 3 h under nitrogen. After being cooled to room temperature, the mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on a silica gel column using CHCl₃ as the eluent. After a small green band containing the metal-free phthalocyanine, the second green band containing the target compound was collected. Repeated chromatography followed by recrystallization from CHCl₃ and MeOH gave blue powder (19.9 mg, 38%).

Preparation of 2,3,9,10,16,17,23,24-octakis(hexylthio)phthalocyaninato zinc complex $Zn[Pc(SC_6H_{13})_8]$ by cyclic tetramerization of di(hexylthio)phthalonitrile. By employing the procedure described above using $Zn(CH_3COO)_2 \cdot 2H_2O$ (59.2 mg, 0.16 mmol) instead of Cu(CH_3COO)_2 \cdot H_2O as the starting material, compound Cu[Pc(SC_6H_{13})_8] was obtained as green powder (25.3 mg, 40%).

Preparation of 2,3,9,10,16,17,23,24-octakis(hexylthio)phthalocyaninato copper complex $Cu[Pc(SC_6H_{13})_8]$ by insertion metal ion into $H_2Pc(SC_6H_{13})_8$. A mixture of $H_2[Pc(SC_6H_{13})_8]$ (45 mg, 0.03 mmol) and Cu(CH₃COO)₂·H₂O (30 mg, 0.16 mmol) in DMF (5 mL) was heated at 150°C for 3 h under nitrogen. After being cooled to room temperature, the mixture was evaporated to dryness under reduced pressure and the residue was chromatographed on a silica gel column using CHCl₃ as the eluent. The dark-green band containing the target compound was collected. Repeated chromatography followed by recrystallization from CHCl₃ and MeOH gave blue powder (20 mg, 42%). **Preparation** of 2,3,9,10,16,17,23,24-octakis(hexylthio)phthalocyaninato zinc complex $Zn[Pc(SC_6H_{13})_8]$ by insertion metal ion into $H_2Pc(SC_6H_{13})_8$. By employing the procedure described above using $Zn(CH_3COO)_2 \cdot 2H_2O$ (35 mg, 0.15 mmol) instead of $Cu(CH_3COO)_2 \cdot H_2O$ as starting material, compound $Zn[Pc(SC_6H_{13})_8]$ was obtained as green powder (25 mg, 46.5%).

Figure S1. (a) Experimental and (b) simulated isotopic pattern for the molecular ion of $Cu[Pc(SO_2C_6H_{13})_8]$ (2) shown in the MALDI-TOF mass spectrum.

Figure S2. ¹H NMR spectrum for $H_2Pc(SC_6H_{13})_8$ in CDCl₃. The signals due to residue CHCl₃ and H_2O are denoted as * and #, respectively.

Figure S3. ¹H NMR spectrum for $Zn[Pc(SC_6H_{13})_8]$ in CDCl₃. The signals due to residue CHCl₃ and H₂O are denoted as * and #, respectively.

Figure S4. ¹H NMR spectrum for $H_2Pc(SO_2C_6H_{13})_8$ (1) in CDCl₃. The signals due to residue CHCl₃ and H_2O are denoted as * and #, respectively.

Figure S5. Molecular orbital maps of HOMO and LUMO for MPc and $M[Pc(SO_2CH_3)_8]$ (M = 2H, Zn).

Figure S6. Electronic absorption spectra of (A) $H_2Pc(SO_2C_6H_{13})_8$ (1) micro-wires (dash line), (B) $Cu[Pc(SO_2C_6H_{13})_8]$ (2) micro-wires (dash line), and (C) $Zn[Pc(SO_2C_6H_{13})_8]$ (3) micro-wires (dash line) in comparison with those recorded in CHCl₃ (solid line).

Figure S7. SEM images of the two-electrode device fabricated from $H_2Pc(SO_2C_6H_{13})_8$ (1) micro-wires (A), $Cu[Pc(SO_2C_6H_{13})_8]$ (2) micro-wires (B), and $Zn[Pc(SO_2C_6H_{13})_8]$ (3) micro-wires (C) on SiO₂.

Figure S8. SEM images of the two-electrode devices fabricated from $H_2Pc(SC_6H_{13})_8$ micro-spheres (A), $Cu[Pc(SC_6H_{13})_8]$ micro-flowers (B), and $Zn[Pc(SC_6H_{13})_8]$ three-dimensional network (C) on SiO₂.

Figure S9. *I-V* curves measured on $CuPc(\beta-SC_6H_{13})_8$ micro-flowers (A), $H_2Pc(\beta-SC_6H_{13})_8$ micro-spheres (B) and $ZnPc(\beta-SC_6H_{13})_8$ three-dimensional network (C).