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ESI-Figure 1. FTIR spectrum of the as prepared Na@HE" nanocrystals prepared
using IL. The inset shows the FTIR spectra of pusi@Br with absorption bands at
1571, 1627 and 1164 ¢mbelonging to the imidazolium ring skeleton stretching
vibrations; the bands at 3152 and 3099"'are the stretching vibration of C(2)-H in the
imidazole ring* The absence of these bands in the NaGgfocrystals confirms that

nanocrystals are free of ionic liquid.
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ESI-Figure 2. PXRD pattern of NaGdfEU** nanocrystals prepared at (A) £680using
ComimBr, (B) 150C without GmimBr and (C) 208C without GmimBr. The reaction
time is 5 hours and reactant ratio 38 = 1:8) [*H” and “C” corresponds to hexagonal

and cubic phase respectively.]
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ESI-Scheme 1Schematicrystal structure of hexagonal NaGdF
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ESI-Figure 3. Energy dispersive X-ray analysis (EDAX) of pure, hexagonal
NaGdR:EU®" nanocrystals.
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ESI-Figure 4. SEM images of pure hexagonal NaGdt nanoparticle prepared

solvothermally (a) without IL and (b) with IL.
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ESI-Figure 5. Selected area electron diffraction pattern of NaiGdEu doped
nanocrystals in the hexagonal phase synthesized at 200°C in the absence of IL. The
marked spots are due to the (100) plane and coming from the bright spot of the dark field
image mentioned in Fig. 1 (F). The dark field images related to the other spots are also
taken and all confirm the hexagonal structure of NaGdF
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ESI-Figure 6. (A) Low magnification TEM and (B) HRTEM images of NaGd&s*
nanocrystals prepared at GF ratio of 1:4. HRTEM image clearly shows the presence
of both cubic and hexagonal lattice planes which matches with PXRD results and
Rietveld analysis.
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ESI-Figure 7. VUV excitation spectruniy, = 615 nm) of doped NaGgEW*" nanorods

in the hexagonal phase. The spectrum was taken at the Beamline | (SUPERLUMI) at
HASYLAB synchrotron facility.
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ESI-Figure 8. Emission spectrum excited at 393 nm with a Xe lamp at room temperature
of NaGdR:Eu doped sample prepared with a®@@ ratio 1:4. This sample contains

cubic and hexagonal NaGgEu.
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ESI-Figure 9. Emission spectrum of hexagonal NaG#a excited at 272 nm with a Xe

lamp at room temperature.
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ESI-Figure 10. Emission spectra of hexagonal NaGafxcited at 272 nm with a Xe
lamp at room temperature (A) and liquid nitrogen (B). At low temperature the transitions
from the higher levels such a®s; °D, and’D; increase significantly (like under
excitation with Aex = 393 nm, see main text Fig. 3B and 3D) compared to the

measurement at room temperature.
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ESI-Figure 11.Photoluminescence (PL) decays of@@iried pure, hexagonal NaGgdF

Eu nanorods monitored (A) at th#D{-'F,) transition and the (BJDo-'F; transition of

Eu®" under 393 nm excitation. The decay curves in Fig S11A are fitted bi-exponentially.
The average delay time is calculated by=t(a 11 + & 12, where a and a are the
contributions of the respective decay component. At room temperat@eaee 0.58 and

0.42 andr; andr, are 2.227 and 2.24 ms, respectively. For the sample measured at 77 K,
a;, @ are 0.76 and 0.24 angandr, are 4.63 and 4.84 ms respectively

The decay curves in Fig S11B are fitted mono-exponentially.
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Judd-Ofelt parameter calculation
Judd-Ofelt parameters are calculated to get more insight into the structural
changes surrounding the ¥uon due to change of crystal phaseBhe Judd-Ofelt
parameter @,) gives information on the intensities or nature of the hypersensitive
transitions of the Eli ion. The experimental intensity parametd®ds)(were determined
from the emission spectra for Edon based on th#Do— ’F; electric-dipole transition
and the®Dy - ‘F; magnetic dipole transitions as the reference and they are estimated
according to the equation
4w’ 1
3nc® 2J+1

Where Ay is the coefficient of spontaneous emission, e is the electronic charg¢he

X2 Q,(°Dg|U @[ F,)? (1)

angular frequency of the transition, h is Plank’s constant, c is the velocity ofyligtte

Lorentz local field correction and is expressedxasn( n®+2y / 9 wheren is the

refractive index of the sample which is experimentally determi(ﬁm,”U (2’||7F2>2is the

squared reduced matrix elements whose value is independent of the chemical
environment of the ion and it is 0.0039 for J=2. Since the magnetic dipgle 'F.
transition is relatively insensitive to the chemical environment around tfie iy
therefore, it can be considered as a reference for the whole spectrum and the coefficient
of spontaneous emission is calculated according to the relation

A= Aor (I 0/ lo1) (Yo1/ Yol (2)
whereyp; and yo;are the energy baricenters of ti& — 'F, and°Do— ’F, transitions,
respectively. A, is the Einstein’s coefficient betwedh, - F; levels and it is calculated
using Ay = N°(Ao.1) vag Wheren is the refractive index of the sample ang.{Avac =
14.65 se¢. J-O parameter<),) for the sodium gadolinium fluoride sample is calculated
by the above explained method. The value of J-O parangpis(13.94x 10%%n¥ for
pure hexagonal phase (prepared at'Gdratio 1:8) under excitation at 394 nm and room
temperature but for the mixed phase of cubic and hexagonal (prepared'/&t @&dio
1:4) the value is much less (5810%%n¥). Higher Q, value for hexagonal sample

suggests that Bliion resides at more asymmetric environment in pure hexagonal phase.
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ESI-Figure 12. Energy level diagram of GH#EW** system depicting transitions and
energy transfers.

Quantum yield calculation

Quantum yield for the NaGdfEL*" ion is calculated by the method of Wegh €t Birst

the intensity ratio ofDo/ °Ds -, swas calculated both for t6&; and®P; levels excitation

and these values are 16.67 and 8.44 respectively. Now from these intensity ratios, the
efficiency of the cross relaxation step can be determined according to

5
R( Do

)6G 5 )Gp
PCR D 1,2,3 J D1,2,3 J

Per + Por R(SD

+1

0 5D )6|:>J
1,2,3

and it is seen that the ratie®PcrtPor (Pcr is the probability of the cross relaxation and
Por is the probability of direct energy transfer from®Gtb EUY) is 0.87; which means
that 8.7 of 10 GH ion in the®G; excited levels relax through a two step energy transfer
to EU", resulting in two visible photons whereas 1.3 of 16*Gahs in the excitedG;
states transfers all its energy to a high energy levels Bfr&sulting in the emission of
one visible photon. In this way, a visible quantum efficiency of 187% is achieved which
is very close to the theoretical maximum value of 200%. Similarly, the quantum yield for

the sample containing both cubic and hexagonal NaGdFwas determined (Fig. 5) to
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127% which is much less compared to the pure hexagonal phase signifying the

importance of preparing pure hexagonal'Hioped NaGdF
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