

Piezoelectric inkjet printed films and patterns of ZnO and Mn doped ZnO: Formation of bifunctional $Zn_{0.98}Mn_{0.02}O$ films

O. D. Jayakumar and A. K. Tyagi*

Electronic Supplementary information (ESI)

ESI Fig. S1. XAS and XES from the O K edge of 3 pass printed films of ZnO and $Zn_{0.98}Mn_{0.02}O$ after printing, drying and annealing at 400 °C for 30 minutes.

ESI Fig. S2. XAS of the transition metal Mn L edge of 3 pass printed film of $Zn_{0.98}Mn_{0.02}O$ after printing, drying and annealing at $400\,^{\circ}C$ and $500\,^{\circ}C$ for 30 minutes.

ESI -Table 1

Viscosity and surface tension of ZnO based ink as a function of precursor concentration, surfactant and binder.

Sr.No	Precursor	Surfactant	Binder wt.%	Viscosity (cP)	Surface
	concentration	(terpinol)	(PVB)		tension
	(M)	wt.%			(dyne/cm)
1	0.1	0.05	0.005	4	20
2	0.15	0.05	0.005	5	23
3	0.2	0.05	0.005	7	25
4	0.25	0.05	0.005	9	28
5	0.25	0.05	0.008	9	32
6	0.25	0.05	0.01	10	35
7	0.25	0.1	0.01	12	35