A facile synthesis of anatase N,B codoped TiO₂ Anodes for Improved-Performance Dye-Sensitized Solar Cells

Huajun Tian, Linhua Hu, Wenxin Li, Jiang Sheng , Shuangying Xu and Songyuan Dai*

Key Lab of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box, 1126, Hefei, Anhui 230031, People's Republic of China,

* Corresponding author: Songyuan Dai, E-mail: <u>sydai@ipp.ac.cn</u>

Supplementary Figure & Table:

Experimental details

Preparation of the N,B codoped TiO₂: The undoped and N,B codoped TiO₂ were prepared by modified sol-gel method. For N,B codoped TiO₂ sample, Titanium isopropoxide (Fluka) was added drop by drop (2 mL/min) to 90 ml deionized water with the mixture of DD-water, H₃BO₃ and CO(NH₂)₂ at room temperature under vigorous stirring for 3-5 h. The formed precipitate solution, which were prepared by adding different amount of boric acid and urea(TiO₂: urea =20/7, 4/1, weight ratio), were washed and collected with deionized water thoroughly, then stirred for 10 h at 80 °C to formed transparent sol and heated at 200 °C in autoclave for 12 h to obtain gelatin which was added polyethylene glycol (PEG, molecular weight of 20 000, Aldrich) and terpineol (Fluka) to form the TiO₂ paste(N,B codoped-1(0.43 at.% N, 0.51 at.% B), N,B codoped-2). The whole process was under vigorous stirring. The preparation method for undoped sample was the same as above with the addition of precursors as required.

Assembly of DSCs:

N,B codoped and undoped photocathodes were fabricated by screen-printing technique using the our group's published procedures to achieve TiO_2 film thicknesses of **13.4** µm, **13.0**µm and **12.8** µm, respectively.^{S1} The N,B codoped and undoped photocathodes were immersed in an 0.5mM ethanol solution of dye N719 [cis-dithiocyanate-N,N'-bis-(4-carboxylate-4'-tetrabutylamonium-carboxylate-2,2'-ipy ridine) ruthenium(II)] at room temperature for 12h. Liquid-junction solar cells were prepared by infiltrating the dye-coated TiO_2 electrode with redox electrolyte containing 0.1 mol·L⁻¹ lithium iodide anhydrous, 0.1 mol·L⁻¹ iodine, 0.6mol·L⁻¹ 1, 2-dimethyl-3-propylimidazolium iodide, 0.5 mol·L⁻¹ 4-tertbutylpyridine in acetonitrile. The effective cell area was 0.25 cm².

Characterization:

The particle morphology of undoped and N,B codoped electrodes microstructure were observed using a field emission scanning electron microscope (FE-SEM, sirion200, FEI Corp., Holland). Crystallite sizes, phases, and shapes were observed with transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) (TEM, JEOL-2010,Japan). The crystallinity of undoped and N,B codoped films were determined using X-ray diffraction analysis (XRD, TTR-III,

Rigaku Corp., Japan) measurement with Cu K α (λ =0.1541 nm). The crystallite size D was calculated by the Sherrer equation. The photocurrent density-photovoltage (J-V) characteristics of DSCs with an active area of 0.25 cm^2 were measured under an illumination of AM 1.5 (100 mW cm^{-2}) which was realized on a solar simulator (Oriel Sol 3A, USA) with a Keithley 2420 source meter(Keithley, USA), calibrated with a NREL-certified silicon solar cell. The UV-vis spectrum was performed on a UV-vis spectrophotometer (TU-1901, PGeneral Instrument Inc., China). The flatband potential (V_{fb}) of the nanostructure TiO₂ electrode was performed by measuring absorbance at 780 nm as a function of the applied potential.^{\$2} For spectroscopic electrochemistry measurement, 4 µm-thick TiO₂ film formed the working electrode (2cm² surface area) of a three-electrode photoelectrochemical cell employing a platinum wire counter electrode and an Ag/AgCl reference electrode. Potential control was carried out on a CHI 660A potentiostat, and the applied potential being scanned at 5 mV/s. A 780 nm monochromatic light source was obtained from UV-Vis spectrophotometer (TU-1901, PGeneral Instrument Inc., China). The incident-phototo-current efficiency (IPCE) of the DSC was measured using a 300W Xe lamp light source with monochromatic light (Oriel Instrument, USA). For each determination of V_{fb}, a new working electrode and freshly prepared electrolyte solution were used. Impedance measurements were carried out with an IM6ex electrochemical workstation (Zahner-Elektrick, Germany) in the frequency range of 10 mHz-1000kHz at room temperature. The working electrode was a dyed TiO₂ electrode of DSC, and the auxiliary electrode and the reference electrode were a platinized counter electrode of DSC. The amplitude of the alternative signal was 5mV.

References:

- [S1]. H.J.Tian, L.H.Hu, C.N.Zhang, W.Q.Liu, Y.Huang, L.Guo, J.Sheng, S.Y.Dai, J. Phys. Chem. C, 2010, 114, 1627-1632.
- [S2]. G. Redmond, D. Fitzmaurice, J. Phys. Chem. 1993, 97, 1426–1430.

Fig.S.1. FE-SEM and HRTEM micrographs of the undoped and N,B codoped titania films. (a), (c), (e) undoped titania films; (b), (d) , (f) N,B codoped titania films.

Fig.S.2. N 1s, B1s XPS spectrum of N,B codoped titania powder, showing that the binding energy of the N 1s, B1s peak centered at 399.8eV, 191.8ev eV, respectively. (0.43 at.% N, 0.51 at.% B)

L/µm	DSC	V _{oc} [mV]	J _{sc} [mA/cm ²]	FF [%]	η [%]
13.4 (undoped)	undoped	771	14.04	74	8.0
(undoped) 13.0	N,B codoped-1	823	13.76	74	8.4
(N,B codoped-1) 12.8 (N,B codoped-2)	N,B codoped-2	792	14.67	70	8.1

Table S.1 Performances of the solar cells based on undoped and N,B codoped $\rm TiO_2$ electrodes.

Table C 2 Dr	martias of the un	donad and N D aa	danad TiO in the	DCC
	operates of the und	uopeu anu n, D co	$uopeu 110_2 m m$	

Type of pastes	Crystallite size (nm)	BET	
		Surface area (m^2/g)	
undoped	15.3	82.4	
ND 1 11	17.5	74.6	
N,B codoped-1	17.5	74.6	
N.P. and anad 2	171	76.6	
N,B codoped-2	1/.1	/0.0	

Fig. S.3. N₂ sorption curve of undoped and N,B codoped mesoporous TiO₂ powder

Fig.S.4. Action spectra of the dye-sensitized solar cells based on undoped and N,B codoped TiO₂ electrodes(0.43 at.% N, 0.51 at.% B).

Fig.S.5. Schematic energy diagram for DSCs based on N719 as the photosensitizer, undoped TiO_2 electrode/N,B codoped TiO_2 electrode, and the I^-/I_3^- redox electrolyte.