Supporting Information of

Structural factors of amphiphilic calix[6]biscrowns affecting their

vesicle-nanotube transitions in self-assembly

Qing Liang, Guosong Chen, Bing Guan*, Ming Jiang*

The Key Laboratory of Molecular Engineering of Polymers, Ministry of Education and Department of Macromolecular Science, Fudan University, Shanghai, 200433, China E-mail: guanbing_chem@fudan.edu.cn, mjiang@fudan.edu.cn,

Fax: (+86)21-65643919

Synthesis and Characterization

Reagents and reaction:

Calix[6]biscrowns was synthesized according to the reference.¹ (1) K_2CO_3 /acetonitrile, reflux, 24 h; (2) $NH_2(CH_2)_6NH_2$ as the solvent and the reagent, room temperature, 24 h.

MALDI-TOF Result of CamA6: $[M+Na^+] m/z = 1552.5$.

¹H NMR (500 MHz, CDCl₃):

1.14 (18 H, s, C(CH₃)₃), 1.23 (34 H, m, C(CH₃)₃ and CH₂), 1.40 (18 H, s, C(CH₃)₃), 1.44 (4 H, br, NH₂), 2.46 (2 H, t, OCH₂CH₂), 2.53-2.81 (6 H, m, OCH₂CH₂), 2.81-3.69 (26 H, m, OCH₂CH₂, ArCH₂Ar and CONHCH₂), 3.88-4.48 (12 H, m, OCH₂CH₂ and ArCH₂Ar), 4.66 (2 H, ArCH₂Ar), 6.78 (2 H, s, ArH), 6.85 (2 H, m, CONH), 7.06 (2 H, s, ArH), 7.10 (2 H, s, ArH), 7.11 (2 H, s, ArH), 7.25 (2 H, s, ArH), 7.30 (2 H, s, ArH);

Scheme S2 The synthesis route of terminal amino calix[6]biscrowns (CA5)

Reagents and reaction:

calix[6]biscrowns was synthesized according to the reference. (1) K_2CO_3 /acetonitrile, reflux, 24 h; (2) dried tetrahydrofuran (THF) as the solvent, LiAlH₄ solution in tetrahydrofuran reflux, 24 h.

MALDI-TOF Result of CA5: [M] m/z = 1371.9; [M+Li⁺] m/z = 1378.1; [M+Na⁺] m/z = 1394.1;

¹H NMR (500 MHz, CDCl₃):

1.13-1.16 (54 H, s, C(CH₃)₃), 1.2-1.7 (6H, m, CH₂CH₂CH₂), 2.89 (2H, m, CH₂NH₂), 3.56 (24H, m, OCH₂CH₂), 3.62(12H, s, ArCH₂Ar), 3.93 (2H, m, ArOCH₂), 4.68 D₂O, 7.35 (6 H, m, ArH), 7.65 (6 H, m, ArH);

Reagents and reaction:

calix[6]biscrowns was synthesized according to the reference. (1) K_2CO_3 /acetonitrile, reflux, 24 h; (2) KOH/Ethanol, reflux, 12 h

MALDI-TOF Result of Cca5: $[M+Na^+] m/z = 1452.2$; $[M+K^+] m/z = 1468.3$;

¹H NMR (500 MHz, CDCl₃):

0.80-0.87 (7 H, s, $C(CH_3)_3$), 1.04-1.07 (4 H, s, $C(CH_3)_3$), 1.13-1.15 (4 H, s, $C(CH_3)_3$), 1.10 (6 H, s, $C(CH_3)_3$), 1.18 (6 H, s, $C(CH_3)_3$), 1.33 (6 H, s, $C(CH_3)_3$), 1.23-1.29 (9 H, s, $C(CH_3)_3$), 1.37-1.50 (12 H, s, $C(CH_3)_3$), 2.07(6H, m, OCH_2CH_2), 2.14(6H, m, OCH_2CH_2), 2.98(H, m, OCH_2CH_2), 3.16(12H, s, $ArCH_2Ar$), 3.33(H₂O), 3.42(8H, s, OCH_2CH_2), 4.38 (8H, s, $ArOCH_2$), 4.14(8H, s, $ArOCH_2CH_2$), 4.0 (4H, m, $ArOCH_2CH_2$), 6.56 (2 H, s, ArH), 6.88 (2 H, s, ArH), 7.05 (2 H, s, ArH), 7.14 (2 H, s, ArH), 7.16 (2 H, s, ArH), 7.28 (2 H, s, ArH);

Scheme S4 The synthesized route of terminal methyl calix[6]biscrowns (Cam2)

Reagents and reaction:

Calix[6]biscrowns was synthesized according to the reference.¹ (1) K_2CO_3 /acetonitrile, reflux, 24 h; (2) NH₂CH₂CH₃ as the solvent and the reagent, room temperature, 24 h.

MALDI-TOF Result of Cam2: $[M+Na^+] m/z = 1394.83; [M+K^+] m/z = 1411.21;$

¹H NMR (500 MHz, CDCl₃):

1.17 (18 H, C(CH₃)₃), 1.26 (19 H, C(CH₃)₃), 1.43 (16 H, C(CH₃)₃), 1.61 (7 H, C(CH₃)₃), 2.46 (2 H, t, OCH₂CH₂), 2.69 (2H, OCH₂CH₂), 3.01-3.22 (6 H, m, OCH₂CH₂), 3.35-3.62 (18 H, m, OCH₂CH₂ and ArCH₂Ar), 4.00-4.46 (14 H, m, OCH₂CH₂ and ArCH₂Ar), 4.69 (2 H, ArCH₂Ar), 6.81 (2 H, s, ArH), 6.85 (2 H, m, CONH), 7.08 (2 H, s, ArH), 7.12 (2 H, s, ArH), 7.16 (2 H, s, ArH), 7.29 (2 H, s, ArH), 7.34 (2 H, s, ArH);

Figure S1 The DLS data of CamA6 in water/ethanol 1:1

Figure S2 The SEM image of the aggregates of CA5 in water/ethanol 1:1

Figure S3 The AFM data of CA5 in water/ethanol 3:1

Figure S4 FT-IR spectra of the virgin sample of **CamA6** (black curve) and nanotubes aggregates (red curve); the data was collected from the fresh membrane of **CamA6** (the virgin sample of **CamA6** in pure ethanol solution and the aggregate in water/ethanol (v:v=3:1) were dropped onto the calcium fluoride crystal platelets and then evaporated quickly).

Figure S5 The TEM image of **Cam2** self-assembly in mixed solution (water:/ethanol= 3:1)

Figure S6. a) The chemical structure of Cam2. b) The X-ray single crystal diffraction of Cam2 and c) the packing model.

Figure S7. The DLS data of the aggregates of **Cca5** in water/ethanol 1:2

Figure S8. The TEM image of the aggregates of Cca5 in water/ethanol 3:1

Table S1. The crystal data and structure refinement for Cam2 (dm1076)

Identification code		dm1076	
Empirical formula		C86 HI18 N2 OI2	
Formula weight		1371.82	
Temperature		173(2) K	
Wavelength		0.7107	73 A
Crystal system, space group		Triclinic,	P-1
Unit œll dimensions			
	a = 13.0708(13) A	alpha = 93.	.1610(10) deg.
	b = 13.4331(13) A	beta = 98.2	2840(10) deg.

$c = 26.062\beta$ A	gamma = 117.9160(10) deg.
Volume	3961.8(7) A ³
Z, Calculated density	2, 1.150 Mg/m^3
Absorption coefficient	0.075 mm^{-1}
F(000)	1488
Crystal size	0.359 x 0.312x 0.167 m
Theta range for data collection	1.59 to 25.50 deg.
Limiting indices	-15<=h<=15, -16<=k<=16, -29<=l<=31
Reflections collected / unique	25451 / 14423 [R(int) = 0.0193]
Completeness to theta $= 25.50$	97.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. tansmission	1.0000 and 0.6396
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	14423 / 130 / 1020
Goodness-of-fit on F2	1.023
Final R indices [[>2sigma(I)]	R1 = 0.0595, wR2 = 0.1791
R indices (all data)	R1 = 0.0752, wR2 = 0.2039
Largest dff. peak and hole	0.698 and -0.369 $e.A^{-3}$

References:

1 a) B. Guan, M. Jiang, X. Yang, Q. Liang and Y. Chen, *Soft Matter* 2008, 4, 1393-1395; b) B. Guan, S. L. Gong, X. J. Wu, Z. G. Li and Y. Y. Chen, *J. Incl. Phenom. Macro. Chem.*, 2006, 54, 81-84.