### **Supporting Information for:**

## 1,2-Bis[N-(N'-alkylimidazolium)]ethane Salts: a New Class of Organic Ionic Plastic Crystals

Minjae Lee,<sup>a</sup> U Hyeok Choi,<sup>b</sup> Sungsool Wi,<sup>a</sup> Carla Slebodnick,<sup>a</sup> Ralph H. Colby<sup>b</sup> and Harry W. Gibson<sup>a</sup>\*

<sup>a</sup> Department of Chemistry, Virginia Tech, Blacksburg, VA, USA 24061

<sup>b</sup> Department of Materials Science and Engineering, Penn State University, State College, PA, USA 16802

\* E-mail: hwgibson@vt.edu; FAX: 540-231-8517; Tel: 540-231-5902

# **Table of Contents**

| Experimental                                                                                                 | 85                     |
|--------------------------------------------------------------------------------------------------------------|------------------------|
| Figure S1. 400 MHz <sup>1</sup> H NMR and 100 MHz <sup>13</sup> C NMR spectrum of 1-heptylimidazole          | (CDCl <sub>3</sub> ,   |
| 22 °C).                                                                                                      | S7                     |
| Figure S2. 400 MHz <sup>1</sup> H NMR and 100 MHz <sup>13</sup> C NMR spectrum of 1,2-bis[N-(N'-             |                        |
| heptylimidazolium)]ethane $2PF_6^-$ ( <b>8PF</b> <sub>6</sub> ) (CD <sub>3</sub> CN, 23 °C).                 | <b>S</b> 8             |
| Figure S3. 400 MHz <sup>1</sup> H NMR and 100 MHz <sup>13</sup> C NMR spectrum of 1-octylimidazole (         | CDCl <sub>3</sub> , 22 |
| °C).                                                                                                         | S9                     |
| Figure S4. 400 MHz <sup>1</sup> H NMR spectrum of 1,2-bis[N-(N'-octylimidazolium)]ethane 2P                  | $F_6$                  |
| ( <b>9PF</b> <sub>6</sub> ) (CD <sub>3</sub> CN, 23 °C).                                                     | S10                    |
| Figure S5. 400 MHz <sup>1</sup> H NMR and 100 MHz <sup>13</sup> C NMR spectrum of 1-decylmidazole (0         | CDCl <sub>3</sub> , 22 |
| °C).                                                                                                         | S11                    |
| Figure S6. 400 MHz <sup>1</sup> H NMR and 100 MHz <sup>13</sup> C NMR spectrum of 1,2-bis[N-(N'-             |                        |
| decylimidazolium)]ethane $2PF_6^-$ ( <b>10PF</b> <sub>6</sub> ) (CD <sub>3</sub> CN, 23 °C).                 | S12                    |
| <b>Figure S7.</b> Partial HR ESI MS spectrum of $\mathbf{8PF_6}$ . $[M-2PF_6]^{2+}$ at m/z 180.1605 (calcd.) | m/z                    |
| 180.1621) proves the formation of the imidazolium dication. The peak at m/z 180.6618                         | is the                 |
| M+1 isotopic peak; 25% intensity relative to M, theory: 24%.                                                 | S13                    |
| <b>Figure S8.</b> Partial HR ESI MS spectrum of $\mathbf{9PF_6}$ . $[M-2PF_6]^{2+}$ at m/z 194.1805 (calcd.) | m/z                    |
| 194.1778) proves the formation of the imidazolium dication. The peak at m/z 194.6819                         | is the                 |
| M+1 isotopic peak; 28% intensity relative to M, theory: 27%.                                                 | S14                    |
| Figure S9. Partial HR ESI MS spectrum of $10PF_6$ . $[M-2PF_6]^{2+}$ at m/z 222.2085 (calcd                  | . m/z                  |
| 222.2093) proves the formation of the imidazolium dication. The peak at m/z 222.7100                         | is the                 |
| M+1 isotopic peak; 31% intensity relative to M, theory: 31%.                                                 | S15                    |

Figure 10. DSC diagram of  $1PF_6$  (heating and cooling rate 5 K/min, N2). Only the secondheating and cooling traces are shown in this figure.S16

| Figure 11. DSC diagram of <b>3BF</b> <sub>4</sub> (heating and cooling rate 5 K/min, N <sub>2</sub> ). Only the second                                |               |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|
| heating and cooling traces are shown in this figure. S                                                                                                | 516           |  |
| Figure 12. DSC diagram of 6PF <sub>6</sub> (heating and cooling rate 5 K/min, N <sub>2</sub> ). Only the second                                       |               |  |
| heating and cooling traces are shown in this figure. S                                                                                                | 517           |  |
| <b>Figure 13.</b> DSC diagram of <b>8Br</b> (heating and cooling rate 5 K/min, N <sub>2</sub> ). Only the second heating                              |               |  |
| and cooling traces are shown in this figure.                                                                                                          | 517           |  |
| Figure 14. DSC diagram of 8PF <sub>6</sub> (heating and cooling rate 5 K/min, N <sub>2</sub> ). Only the second                                       |               |  |
| heating and cooling traces are shown in this figure. S                                                                                                | 518           |  |
| <b>Figure 15.</b> DSC diagram of <b>9Br</b> (heating and cooling rate 5 K/min, N <sub>2</sub> ). Only the second heating                              |               |  |
| and cooling traces are shown in this figure. S                                                                                                        | 518           |  |
| Figure 16. DSC diagram of $9PF_6$ (heating and cooling rate 5 K/min, N <sub>2</sub> ). Only the second                                                |               |  |
| heating and cooling traces are shown in this figure.                                                                                                  | 519           |  |
| <b>Figure 17.</b> DSC diagram of <b>10Br</b> (heating and cooling rate 5 K/min, N <sub>2</sub> ). Only the second                                     |               |  |
| heating and cooling traces are shown in this figure.                                                                                                  | 519           |  |
| Figure 18. DSC diagram of $10PF_6$ (heating and cooling rate 5 K/min, N <sub>2</sub> ). Only the second                                               |               |  |
| heating and cooling traces are shown in this figure.                                                                                                  | \$20          |  |
| <b>Figure 19.</b> DSC diagram of <b>11Br</b> (heating and cooling rate 5 K/min, $N_2$ ). Only the second                                              |               |  |
| heating and cooling traces are shown in this figure.                                                                                                  | 520           |  |
| <b>Figure 20.</b> DSC diagram of <b>11PF</b> <sub>6</sub> (heating and cooling rate 5 K/min, $N_2$ ). Only the second                                 |               |  |
| heating and cooling traces are shown in this figure.                                                                                                  | 21            |  |
| <b>Figure 21.</b> Temperature dependence of the ionic DC conductivity of <b>1PF</b> <sub>6</sub> . The DSC ing trace is superimposed on the plot.     |               |  |
| Figure 22. Temperature dependence of the ionic DC conductivity of 8Br. The DSC cooling is superimposed on the plot. S2                                | g trace<br>22 |  |
| <b>Figure 23.</b> Temperature dependence of the ionic DC conductivity of <b>8PF</b> <sub>6</sub> . The DSC cooling trace is superimposed on the plot. | ng<br>22      |  |

**Figure 24.** Temperature dependence of the ionic DC conductivity of **9Br**. The DSC cooling trace is superimposed on the plot. S23

**Figure 25.** Temperature dependence of the ionic DC conductivity of **10Br**. The DSC cooling trace is superimposed on the plot. S23

Figure 26. Arrhenius plots: logarithm of ionic DC conductivity vs. inverse absolute temperature for 1PF<sub>6</sub>, 8Br, 8PF<sub>6</sub>, 9Br, 9PF<sub>6</sub>, 10Br, 10PF<sub>6</sub>, and 11PF<sub>6</sub>. S24

Reference

S24

#### Experimental

**1-Heptylimidaozle.**<sup>S1</sup> To a solution of imidazole (2.40, 30 mmol) in NaOH (50%) solution (2.86 g, 35 mmol), 1-bromoheptane (5.36 g, 30 mmol) and THF (15 mL) were added. The mixture was refluxed for 3 days. After the mixture had cooled to room temperature, THF was removed by a rotoevaporator. The residue was extracted with dichloromethane/water 3 times. The combined organic layer was washed with water and then dried over Na<sub>2</sub>SO<sub>4</sub>. The drying agent was filtered off and the filtrate solution was concentrated. Drying in a vacuum oven gave a yellow oily product, 4.71 g (94%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 22 °C):  $\delta$  0.88 (t, *J*=7, 3H), 1.28 (m, 8H), 1.76 (m, 2H), 3.91 (t, *J*=7, 2H), 6.90 (s, 1H), 7.04 (s, 1H), 7.45 (s, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, 22 °C): 14.0, 22.5, 26.4, 28.7, 31.0, 31.6, 47.0, 118.7, 129.3, 137.0.

**1-Octylimidazole.<sup>SII</sup>** To a solution of imidazole (2.40, 30 mmol) in NaOH (50%) solution (2.86 g, 35 mmol), 1-bromooctane (5.79 g, 30 mmol) and THF (15 mL) were added. The mixture was refluxed for 3 days. After the mixture had cooled to room temperature, THF was removed by a rotoevaporator. The residue was extracted with dichloromethane/water 3 times. The combined organic layer was washed with water and then dried over Na<sub>2</sub>SO<sub>4</sub>. The drying agent was filtered off and the filtrate solution was concentrated. Drying in a vacuum oven gave a yellow oily product, 4.70 g (86%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 22 °C):  $\delta$  0.88 (t, *J*=7, 3H), 1.28 (m, 10H), 1.76 (m, 2H), 3.91 (t, *J*=7, 2H), 6.90 (s, 1H), 7.04 (s, 1H), 7.45 (s, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, 22 °C):  $\delta$  13.0, 21.6, 15.5, 28.0, 28.1, 30.1, 30.8, 46.0, 117.7, 128.3, 136.0.

**1-Decylimidzole.** <sup>S1</sup> To a solution of imidazole (2.40 g, 30 mmol) in NaOH (50%) solution (2.86 g, 35 mmol), 1-bromodecane (6.63 g, 30 mmol) and THF (15 mL) were added. The mixture was refluxed for 3 days. After the mixture had cooled to room temperature, THF was removed by a rotoevaporator. The residue was extracted with dichloromethane/water 3 times. The combined organic layer was washed with water and then dried over Na<sub>2</sub>SO<sub>4</sub>. The drying

agent was filtered off and the filtrate solution was concentrated. Drying in a vacuum oven gave a yellow oily product, 6.31 g (98%). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, 22 °C):  $\delta$  0.88 (t, *J*=7, 3H), 1.28 (m (br), 14H), 1.76 (m, 2H), 3.91 (t, *J*=7, 2H), 6.90 (s, 1H), 7.04 (s, 1H), 7.45 (s, 1H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>, 22 °C):  $\delta$  14.0, 22.6, 26.4, 29.0, 29.3, 29.4, 31.0, 31.7, 46.9, 118.7, 129.2, 136.9.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2011

# NMR Spectra



**Figure S1.** 400 MHz <sup>1</sup>H NMR and 100 MHz <sup>13</sup>C NMR spectrum of 1-heptylimidazole (CDCl<sub>3</sub>, 22 °C).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is  $\ensuremath{\mathbb{O}}$  The Royal Society of Chemistry 2011



**Figure S2.** 400 MHz <sup>1</sup>H NMR and 100 MHz <sup>13</sup>C NMR spectrum of 1,2-bis[N-(N'-heptylimidazolium)]ethane  $2PF_6^-$  (**8PF**<sub>6</sub>) (CD<sub>3</sub>CN, 23 °C).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2011



**Figure S3.** 400 MHz <sup>1</sup>H NMR and 100 MHz <sup>13</sup>C NMR spectrum of 1-octylimidazole (CDCl<sub>3</sub>, 22 °C).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is O The Royal Society of Chemistry 2011



Figure S4. 400 MHz <sup>1</sup>H NMR spectrum of 1,2-bis[N-(N'-octylimidazolium)]ethane  $2PF_6^-$  (9PF<sub>6</sub>) (CD<sub>3</sub>CN, 23 °C).



**Figure S5.** 400 MHz <sup>1</sup>H NMR and 100 MHz <sup>13</sup>C NMR spectrum of 1-decylimidazole (CDCl<sub>3</sub>, 22 °C).

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry This journal is  $\ensuremath{\mathbb{O}}$  The Royal Society of Chemistry 2011



Figure S6. 400 MHz <sup>1</sup>H NMR and 100 MHz <sup>13</sup>C NMR spectrum of 1,2-bis[N-(N'-decylimidazolium)]ethane  $2PF_6^-$  (10PF<sub>6</sub>) (CD<sub>3</sub>CN, 23 °C).

#### **MS** Spectra of the Dications



**Figure S7.** Partial HR ESI MS spectrum of  $\mathbf{8PF_6}$ .  $[M-2PF_6]^{2+}$  at m/z 180.1605 (calcd. m/z 180.1621) proves the formation of the imidazolium dication. The peak at m/z 180.6618 is the M+1 isotopic peak; 25% intensity relative to M, theory: 24%.



**Figure S8.** Partial HR ESI MS spectrum of  $9PF_6$ .  $[M-2PF_6]^{2+}$  at m/z 194.1805 (calcd. m/z 194.1778) proves the formation of the imidazolium dication. The peak at m/z 194.6819 is the M+1 isotopic peak; 28% intensity relative to M, theory: 27%.



**Figure S9.** Partial HR ESI MS spectrum of  $10PF_6$ .  $[M-2PF_6]^{2+}$  at m/z 222.2085 (calcd. m/z 222.2093) proves the formation of the imidazolium dication. The peak at m/z 222.7100 is the M+1 isotopic peak; 31% intensity relative to M, theory: 31%.





Figure 10. DSC diagram of  $1PF_6$  (heating and cooling rate 5 K/min, N<sub>2</sub>). Only the second heating and cooling traces are shown in this figure.



Figure 11. DSC diagram of  $3BF_4$  (heating and cooling rate 5 K/min, N<sub>2</sub>). Only the second heating and cooling traces are shown in this figure.



Figure 12. DSC diagram of  $6PF_6$  (heating and cooling rate 5 K/min, N<sub>2</sub>). Only the second heating and cooling traces are shown in this figure.



**Figure 13.** DSC diagram of **8Br** (heating and cooling rate 5 K/min, N<sub>2</sub>). Only the second heating and cooling traces are shown in this figure.



Figure 14. DSC diagram of  $8PF_6$  (heating and cooling rate 5 K/min, N<sub>2</sub>). Only the second heating and cooling traces are shown in this figure.



**Figure 15.** DSC diagram of **9Br** (heating and cooling rate 5 K/min, N<sub>2</sub>). Only the second heating and cooling traces are shown in this figure.



Figure 16. DSC diagram of  $9PF_6$  (heating and cooling rate 5 K/min, N<sub>2</sub>). Only the second heating and cooling traces are shown in this figure.



**Figure 17.** DSC diagram of **10Br** (heating and cooling rate 5 K/min, N<sub>2</sub>). Only the second heating and cooling traces are shown in this figure.



Figure 18. DSC diagram of  $10PF_6$  (heating and cooling rate 5 K/min, N<sub>2</sub>). Only the second heating and cooling traces are shown in this figure.



**Figure 19.** DSC diagram of **11Br** (heating and cooling rate 5 K/min, N<sub>2</sub>). Only the second heating and cooling traces are shown in this figure.



Figure 20. DSC diagram of  $11PF_6$  (heating and cooling rate 5 K/min, N<sub>2</sub>). Only the second heating and cooling traces are shown in this figure.



Figure 21. Temperature dependence of the ionic DC conductivity of  $1PF_6$ . The DSC heating trace is superimposed on the plot.



Figure 22. Temperature dependence of the ionic DC conductivity of 8Br. The DSC cooling trace is superimposed on the plot.





Figure 23. Temperature dependence of the ionic DC conductivity of 8PF<sub>6</sub>. The DSC cooling trace is superimposed on the plot.

**Figure 24.** Temperature dependence of the ionic DC conductivity of **9Br**. The DSC cooling trace is superimposed on the plot.



**Figure 25.** Temperature dependence of the ionic DC conductivity of **10Br**. The DSC cooling trace is superimposed on the plot.



**Figure 26.** Arrhenius plots: logarithm of ionic DC conductivity vs. inverse absolute temperature for **1PF**<sub>6</sub>, **8Br**, **8PF**<sub>6</sub>, **9Br**, **9PF**<sub>6</sub>, **10Br**, **10PF**<sub>6</sub>, and **11PF**<sub>6</sub>.

### **Reference:**

S1. S. Khabnadideh, Z. Reazei, A. Khalafi-Nezhad, R. Bahrinajafi, R. Mohamadi, A. A. Farrokhroz, *Bioorg. Med. Chem. Lett.* 2003, **13**, 2863.