Electronic Supplementary Information

Core-Shell CdSe@Pt Nanocomposites with Superior Electrocatalytic Activity Enhanced by Lateral Strain Effect

Jinhua Yang,^a Xiaojun Chen,^a Feng Ye,^b Caixia Wang,^b Yuangang Zheng,^a* Jun Yang^{a,b}*

^a Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, 04-01, Singapore 138669

^b Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China 100190

*E-mail: zhengy@imre.a-star.edu.sg (YZ); jyang@mail.ipe.ac.cn (JY)

Fig. S1 CdSe nanocrystals as-prepared: (a, c) TEM and (b, d) HRTEM images of CdSe nanocrystals with average sizes of (a, b) 10 nm and (c, d) 5 nm, respectively.

Fig. S2 XRD patterns of CdSe nanocrystals of different sizes and CdSe reference (JCPDS 653436).

Fig. S3 XRD patterns core-shell CdSe@Pt nanocomposites synthesized using 10 nm CdSe cores: (a) CdSe reference (JCPDS 653436, d(110) = 0.2150), (b, c, d) core-shell CdSe@Pt nanocomposites at CdSe/Pt molar ratio of 2/1, 1/1, and 1/2, respectively, and (e) Pt reference (JCPDS 882343, d(111) = 0.2292).

Fig. S4 Electrochemical characterization of the core-shell CdSe@Pt nanocomposites synthesized using 10 nm CdSe cores: (a) ORR polarization curves for the core-shell CdSe@Pt nanocomposites at different CdSe/Pt molar ratios and commercial Pt/C catalysts, recorded at room temperature in an O₂-saturated HClO₄ solution (0.1 M) at a sweep rate of 20 mV·s⁻¹ and a rotating speed of 1600 rpm; (b) Cyclic voltammograms of core-shell CdSe@Pt nanocomposites at different CdSe/Pt molar ratios and commercial Pt/C catalysts in argon-purged HClO₄ (0.1 M) at room temperature. Sweep rate = 50 mV s⁻¹.

Fig. S5 TEM image of the Pt/C (E-TEK) catalysts, which consisted of ~3.2 nm Pt nanoparticles (20 wt%) on Vulcan XC-72 carbon support.

Fig. S6 ECSA-specific ORR polarization curves for the core-shell CdSe@Pt nanocomposites at different CdSe/Pt molar ratios and commercial Pt/C catalysts, recorded at room temperature in an O_2 -saturated HClO₄ solution (0.1 M) at a sweep rate of 20 mV·s⁻¹ and a rotating speed of 1600 rpm.

Fig. S7 EDX analysis of single core-shell CdSe@Pt nanocomposite labeled in the inset STEM image.

Fig. S8 XRD patterns core-shell CdSe@Pt nanocomposites using 10 nm CdSe cores at different CdSe/Pt molar ratios and Pt reference.

Fig. S9 Cyclic voltammograms of core-shell CdSe@Pt nanocomposites synthesized using 5 nm CdSe cores in argon-purged HClO₄ (0.1 M) with methanol (1 M). Sweep rate: 20 mV s⁻¹; room temperature.

Table S1 Electrochemical measurements of methanol oxidation on small core-shell CdSe@Pt

 nanocomposites and commercial Pt/C catalysts.

Materials	Forward scan	Forward scan peak	Backward scan	Backward scan peak
	peak potential	current density	peak potential	current density
	(V)	$(mA \cdot cm^{-2})$	(V)	$(mA \cdot cm^{-2})$
CdSe@Pt (2/1)	0.71	76.3	0.46	67.0
CdSe@Pt (1/1)	0.77	126.4	0.55	122.3
CdSe@Pt (1/2)	0.75	165.8	0.52	152.3
Pt/C	0.71	95.2	0.50	87.4